
Otis Gospodnetic
Erik Hatcher
FOREWORD BY Doug Cutting

M A N N I N G

Lucene
IN ACTION

´

A guide to the Java search engine

Lucene in Action

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene in Action
ERIK HATCHER

OTIS GOSPODNETIC

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Jason Ruesch <krhonos713@hotmail.com>

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-28-1

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04
Licensed to Jason Ruesch <krhonos713@hotmail.com>

To Ethan, Jakob, and Carole
 –E.H.

To the Lucene community, chichimichi, and Saviotlama
 –O.G.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

brief contents

PART 1 CORE LUCENE...1

1 ■ Meet Lucene 3

2 ■ Indexing 28

3 ■ Adding search to your application 68

4 ■ Analysis 102

5 ■ Advanced search techniques 149

6 ■ Extending search 194

PART 2 APPLIED LUCENE ..221

7 ■ Parsing common document formats 223

8 ■ Tools and extensions 267

9 ■ Lucene ports 312

10 ■ Case studies 325
vii

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

contents

foreword xvii
preface xix
acknowledgments xxii
about this book xxv

PART 1 CORE LUCENE.. 1

1 Meet Lucene 3
1.1 Evolution of information organization and access 4

1.2 Understanding Lucene 6
What Lucene is 7 ■ What Lucene can do for you 7
History of Lucene 9 ■ Who uses Lucene 10 ■ Lucene ports: Perl,
Python, C++, .NET, Ruby 10

1.3 Indexing and searching 10
What is indexing, and why is it important? 10
What is searching? 11

1.4 Lucene in action: a sample application 11
Creating an index 12 ■ Searching an index 15
ix

Licensed to Jason Ruesch <krhonos713@hotmail.com>

x CONTENTS
1.5 Understanding the core indexing classes 18
IndexWriter 19 ■ Directory 19 ■ Analyzer 19
Document 20 ■ Field 20

1.6 Understanding the core searching classes 22
IndexSearcher 23 ■ Term 23 ■ Query 23
TermQuery 24 ■ Hits 24

1.7 Review of alternate search products 24
IR libraries 24 ■ Indexing and searching applications 26
Online resources 27

1.8 Summary 27

2 Indexing 28
2.1 Understanding the indexing process 29

Conversion to text 29 ■ Analysis 30 ■ Index writing 31
2.2 Basic index operations 31

Adding documents to an index 31 ■ Removing Documents from an
index 33 ■ Undeleting Documents 36 ■ Updating Documents in
an index 36

2.3 Boosting Documents and Fields 38

2.4 Indexing dates 39

2.5 Indexing numbers 40

2.6 Indexing Fields used for sorting 41

2.7 Controlling the indexing process 42
Tuning indexing performance 42 ■ In-memory indexing:
RAMDirectory 48 ■ Limiting Field sizes: maxFieldLength 54

2.8 Optimizing an index 56

2.9 Concurrency, thread-safety, and locking issues 59
Concurrency rules 59 ■ Thread-safety 60
Index locking 62 ■ Disabling index locking 66

2.10 Debugging indexing 66

2.11 Summary 67
Licensed to Jason Ruesch <krhonos713@hotmail.com>

CONTENTS xi
3 Adding search to your application 68
3.1 Implementing a simple search feature 69

Searching for a specific term 70 ■ Parsing a user-entered query
expression: QueryParser 72

3.2 Using IndexSearcher 75
Working with Hits 76 ■ Paging through Hits 77
Reading indexes into memory 77

3.3 Understanding Lucene scoring 78
Lucene, you got a lot of ‘splainin’ to do! 80

3.4 Creating queries programmatically 81
Searching by term: TermQuery 82 ■ Searching within a range:
RangeQuery 83 ■ Searching on a string: PrefixQuery 84
Combining queries: BooleanQuery 85 ■ Searching by phrase:
PhraseQuery 87 ■ Searching by wildcard: WildcardQuery 90
Searching for similar terms: FuzzyQuery 92

3.5 Parsing query expressions: QueryParser 93
Query.toString 94 ■ Boolean operators 94 ■ Grouping 95
Field selection 95 ■ Range searches 96 ■ Phrase queries 98
Wildcard and prefix queries 99 ■ Fuzzy queries 99 ■ Boosting
queries 99 ■ To QueryParse or not to QueryParse? 100

3.6 Summary 100

4 Analysis 102
4.1 Using analyzers 104

Indexing analysis 105 ■ QueryParser analysis 106
Parsing versus analysis: when an analyzer isn’t appropriate 107

4.2 Analyzing the analyzer 107
What’s in a token? 108 ■ TokenStreams uncensored 109
Visualizing analyzers 112 ■ Filtering order can be important 116

4.3 Using the built-in analyzers 119
StopAnalyzer 119 ■ StandardAnalyzer 120

4.4 Dealing with keyword fields 121
Alternate keyword analyzer 125

4.5 “Sounds like” querying 125
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xii CONTENTS
4.6 Synonyms, aliases, and words that
mean the same 128
Visualizing token positions 134

4.7 Stemming analysis 136
Leaving holes 136 ■ Putting it together 137
Hole lot of trouble 138

4.8 Language analysis issues 140
Unicode and encodings 140 ■ Analyzing non-English
languages 141 ■ Analyzing Asian languages 142
Zaijian 145

4.9 Nutch analysis 145

4.10 Summary 147

5 Advanced search techniques 149
5.1 Sorting search results 150

Using a sort 150 ■ Sorting by relevance 152 ■ Sorting by index
order 153 ■ Sorting by a field 154 ■ Reversing sort order 154
Sorting by multiple fields 155 ■ Selecting a sorting field type 156
Using a nondefault locale for sorting 157 ■ Performance effect of
sorting 157

5.2 Using PhrasePrefixQuery 157

5.3 Querying on multiple fields at once 159

5.4 Span queries: Lucene’s new hidden gem 161
Building block of spanning, SpanTermQuery 163 ■ Finding
spans at the beginning of a field 165 ■ Spans near one
another 166 ■ Excluding span overlap from matches 168
Spanning the globe 169 ■ SpanQuery and QueryParser 170

5.5 Filtering a search 171
Using DateFilter 171 ■ Using QueryFilter 173
Security filters 174 ■ A QueryFilter alternative 176
Caching filter results 177 ■ Beyond the built-in filters 177

5.6 Searching across multiple Lucene indexes 178
Using MultiSearcher 178 ■ Multithreaded searching using
ParallelMultiSearcher 180
Licensed to Jason Ruesch <krhonos713@hotmail.com>

CONTENTS xiii
5.7 Leveraging term vectors 185
Books like this 186 ■ What category? 189

5.8 Summary 193

6 Extending search 194
6.1 Using a custom sort method 195

Accessing values used in custom sorting 200
6.2 Developing a custom HitCollector 201

About BookLinkCollector 202 ■ Using BookLinkCollector 202
6.3 Extending QueryParser 203

Customizing QueryParser’s behavior 203 ■ Prohibiting fuzzy and
wildcard queries 204 ■ Handling numeric field-range queries 205
Allowing ordered phrase queries 208

6.4 Using a custom filter 209
Using a filtered query 212

6.5 Performance testing 213
Testing the speed of a search 213 ■ Load testing 217
QueryParser again! 218 ■ Morals of performance testing 220

6.6 Summary 220

PART 2 APPLIED LUCENE.. 221

7 Parsing common document formats 223
7.1 Handling rich-text documents 224

Creating a common DocumentHandler interface 225
7.2 Indexing XML 226

Parsing and indexing using SAX 227 ■ Parsing and indexing
using Digester 230

7.3 Indexing a PDF document 235
Extracting text and indexing using PDFBox 236
Built-in Lucene support 239

7.4 Indexing an HTML document 241
Getting the HTML source data 242 ■ Using JTidy 242
Using NekoHTML 245
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xiv CONTENTS
7.5 Indexing a Microsoft Word document 248
Using POI 249 ■ Using TextMining.org’s API 250

7.6 Indexing an RTF document 252

7.7 Indexing a plain-text document 253

7.8 Creating a document-handling framework 254
FileHandler interface 255 ■ ExtensionFileHandler 257
FileIndexer application 260 ■ Using FileIndexer 262
FileIndexer drawbacks, and how to extend the framework 263

7.9 Other text-extraction tools 264
Document-management systems and services 264

7.10 Summary 265

8 Tools and extensions 267
8.1 Playing in Lucene’s Sandbox 268

8.2 Interacting with an index 269
lucli: a command-line interface 269 ■ Luke: the Lucene Index
Toolbox 271 ■ LIMO: Lucene Index Monitor 279

8.3 Analyzers, tokenizers, and TokenFilters, oh my 282
SnowballAnalyzer 283 ■ Obtaining the Sandbox analyzers 284

8.4 Java Development with Ant and Lucene 284
Using the <index> task 285 ■ Creating a custom document
handler 286 ■ Installation 290

8.5 JavaScript browser utilities 290
JavaScript query construction and validation 291 ■ Escaping
special characters 292 ■ Using JavaScript support 292

8.6 Synonyms from WordNet 292
Building the synonym index 294 ■ Tying WordNet synonyms into
an analyzer 296 ■ Calling on Lucene 297

8.7 Highlighting query terms 300
Highlighting with CSS 301 ■ Highlighting Hits 303

8.8 Chaining filters 304

8.9 Storing an index in Berkeley DB 307
Coding to DbDirectory 308 ■ Installing DbDirectory 309
Licensed to Jason Ruesch <krhonos713@hotmail.com>

CONTENTS xv
8.10 Building the Sandbox 309
Check it out 310 ■ Ant in the Sandbox 310

8.11 Summary 311

9 Lucene ports 312
9.1 Ports’ relation to Lucene 313

9.2 CLucene 314
Supported platforms 314 ■ API compatibility 314
Unicode support 316 ■ Performance 317 ■ Users 317

9.3 dotLucene 317
API compatibility 317 ■ Index compatibility 318
Performance 318 ■ Users 318

9.4 Plucene 318
API compatibility 319 ■ Index compatibility 320
Performance 320 ■ Users 320

9.5 Lupy 320
API compatibility 320 ■ Index compatibility 322
Performance 322 ■ Users 322

9.6 PyLucene 322
API compatibility 323 ■ Index compatibility 323
Performance 323 ■ Users 323

9.7 Summary 324

10 Case studies 325
10.1 Nutch: “The NPR of search engines” 326

More in depth 327 ■ Other Nutch features 328
10.2 Using Lucene at jGuru 329

Topic lexicons and document categorization 330 ■ Search database
structure 331 ■ Index fields 332 ■ Indexing and content
preparation 333 ■ Queries 335 ■ JGuruMultiSearcher 339
Miscellaneous 340

10.3 Using Lucene in SearchBlox 341
Why choose Lucene? 341 ■ SearchBlox architecture 342
Search results 343 ■ Language support 343
Reporting Engine 344 ■ Summary 344
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xvi CONTENTS
10.4 Competitive intelligence with Lucene in XtraMind’s XM-
InformationMinder™ 344
The system architecture 347 ■ How Lucene has helped us 350

10.5 Alias-i: orthographic variation with Lucene 351
Alias-i application architecture 352 ■ Orthographic variation 354
The noisy channel model of spelling correction 355 ■ The vector
comparison model of spelling variation 356 ■ A subword Lucene
analyzer 357 ■ Accuracy, efficiency, and other applications 360
Mixing in context 360 ■ References 361

10.6 Artful searching at Michaels.com 361
Indexing content 362 ■ Searching content 367
Search statistics 370 ■ Summary 371

10.7 I love Lucene: TheServerSide 371
Building better search capability 371 ■ High-level
infrastructure 373 ■ Building the index 374 ■ Searching the
index 377 ■ Configuration: one place to rule them all 379
Web tier: TheSeeeeeeeeeeeerverSide? 383 ■ Summary 385

10.8 Conclusion 385

appendix A: Installing Lucene 387
appendix B: Lucene index format 393
appendix C: Resources 408

index 415
Licensed to Jason Ruesch <krhonos713@hotmail.com>

foreword
Lucene started as a self-serving project. In late 1997, my job uncertain, I
sought something of my own to market. Java was the hot new programming
language, and I needed an excuse to learn it. I already knew how to write
search software, and thought I might fill a niche by writing search software in
Java. So I wrote Lucene.

 A few years later, in 2000, I realized that I didn’t like to market stuff. I had
no interest in negotiating licenses and contracts, and I didn’t want to hire peo-
ple and build a company. I liked writing software, not selling it. So I tossed
Lucene up on SourceForge, to see if open source might let me keep doing
what I liked.

 A few folks started using Lucene right away. Around a year later, in 2001,
folks at Apache offered to adopt Lucene. The number of daily messages on
the Lucene mailing lists grew steadily. Code contributions started to trickle in.
Most were additions around the edges of Lucene: I was still the only active
developer who fully grokked its core. Still, Lucene was on the road to becom-
ing a real collaborative project.

 Now, in 2004, Lucene has a pool of active developers with deep understand-
ings of its core. I’m no longer involved in most day-to-day development; sub-
stantial additions and improvements are regularly made by this strong team.

 Through the years, Lucene has been translated into several other program-
ming languages, including C++, C#, Perl, and Python. In the original Java,
xvii

Licensed to Jason Ruesch <krhonos713@hotmail.com>

xviii FOREWORD
and in these other incarnations, Lucene is used much more widely than I ever
would have dreamed. It powers search in diverse applications like discussion
groups at Fortune 100 companies, commercial bug trackers, email search sup-
plied by Microsoft, and a web search engine that scales to billions of pages. When,
at industry events, I am introduced to someone as the “Lucene guy,” more often
than not folks tell me how they’ve used Lucene in a project. I still figure I’ve only
heard about a small fraction of all Lucene applications.

 Lucene is much more widely used than it ever would have been if I had tried
to sell it. Application developers seem to prefer open source. Instead of having to
contact technical support when they have a problem (and then wait for an answer,
hoping they were correctly understood), they can frequently just look at the
source code to diagnose their problems. If that’s not enough, the free support
provided by peers on the mailing lists is better than most commercial support. A
functioning open-source project like Lucene makes application developers more
efficient and productive.

 Lucene, through open source, has become something much greater than I
ever imagined it would. I set it going, but it took the combined efforts of the
Lucene community to make it thrive.

 So what’s next for Lucene? I can’t tell you. Armed with this book, you are now
a member of the Lucene community, and it’s up to you to take Lucene to new
places. Bon voyage!

 DOUG CUTTING

 Creator of Lucene and Nutch

Licensed to Jason Ruesch <krhonos713@hotmail.com>

preface
From Erik Hatcher
I’ve been intrigued with searching and indexing from the early days of the
Internet. I have fond memories (circa 1991) of managing an email list using
majordomo, MUSH (Mail User’s Shell), and a handful of Perl, awk, and shell
scripts. I implemented a CGI web interface to allow users to search the list
archives and other users’ profiles using grep tricks under the covers. Then
along came Yahoo!, AltaVista, and Excite, all which I visited regularly.

 After my first child, Jakob, was born, my digital photo archive began grow-
ing rapidly. I was intrigued with the idea of developing a system to manage
the pictures so that I could attach meta-data to each picture, such as keywords
and date taken, and, of course, locate the pictures easily in any dimension I
chose. In the late 1990s, I prototyped a filesystem-based approach using
Microsoft technologies, including Microsoft Index Server, Active Server Pages,
and a third COM component for image manipulation. At the time, my profes-
sional life was consumed with these same technologies. I was able to cobble
together a compelling application in a couple of days of spare-time hacking.

 My professional life shifted toward Java technologies, and my computing
life consisted of less and less Microsoft Windows. In an effort to reimplement
my personal photo archive and search engine in Java technologies in an oper-
ating system–agnostic way, I came across Lucene. Lucene’s ease of use far
xix

Licensed to Jason Ruesch <krhonos713@hotmail.com>

xx PREFACE
exceeded my expectations—I had experienced numerous other open-source
libraries and tools that were far simpler conceptually yet far more complex to use.

 In 2001, Steve Loughran and I began writing Java Development with Ant (Man-
ning). We took the idea of an image search engine application and generalized it
as a document search engine. This application example is used throughout the
Ant book and can be customized as an image search engine. The tie to Ant
comes not only from a simple compile-and-package build process but also from a
custom Ant task, <index>, we created that indexes files during the build process
using Lucene. This Ant task now lives in Lucene’s Sandbox and is described in
section 8.4 of this book.

 This Ant task is in production use for my custom blogging system, which I call
BlogScene (http://www.blogscene.org/erik). I run an Ant build process, after cre-
ating a blog entry, which indexes new entries and uploads them to my server. My
blog server consists of a servlet, some Velocity templates, and a Lucene index,
allowing for rich queries, even syndication of queries. Compared to other blog-
ging systems, BlogScene is vastly inferior in features and finesse, but the full-text
search capabilities are very powerful.

 I’m now working with the Applied Research in Patacriticism group at the Uni-
versity of Virginia (http://www.patacriticism.org), where I’m putting my text anal-
ysis, indexing, and searching expertise to the test and stretching my mind with
discussions of how quantum physics relates to literature. “Poets are the unac-
knowledged engineers of the world.”

From Otis Gospodnetic
My interest in and passion for information retrieval and management began dur-
ing my student years at Middlebury College. At that time, I discovered an
immense source of information known as the Web. Although the Web was still in
its infancy, the long-term need for gathering, analyzing, indexing, and searching
was evident. I became obsessed with creating repositories of information pulled
from the Web, began writing web crawlers, and dreamed of ways to search the col-
lected information. I viewed search as the killer application in a largely uncharted
territory. With that in the back of my mind, I began the first in my series of projects
that share a common denominator: gathering and searching information.

 In 1995, fellow student Marshall Levin and I created WebPh, an open-source
program used for collecting and retrieving personal contact information. In
essence, it was a simple electronic phone book with a web interface (CGI), one of
the first of its kind at that time. (In fact, it was cited as an example of prior art in
a court case in the late 1990s!) Universities and government institutions around
Licensed to Jason Ruesch <krhonos713@hotmail.com>

PREFACE xxi
the world have been the primary adopters of this program, and many are still
using it. In 1997, armed with my WebPh experience, I proceeded to create Popu-
lus, a popular white pages at the time. Even though the technology (similar to
that of WebPh) was rudimentary, Populus carried its weight and was a compara-
ble match to the big players such as WhoWhere, Bigfoot, and Infospace.

 After two projects that focused on personal contact information, it was time to
explore new territory. I began my next venture, Infojump, which involved culling
high-quality information from online newsletters, journals, newspapers, and
magazines. In addition to my own software, which consisted of large sets of Perl
modules and scripts, Infojump utilized a web crawler called Webinator and a full-
text search product called Texis. The service provided by Infojump in 1998 was
much like that of FindArticles.com today.

 Although WebPh, Populus, and Infojump served their purposes and were
fully functional, they all had technical limitations. The missing piece in each of
them was a powerful information-retrieval library that would allow full-text
searches backed by inverted indexes. Instead of trying to reinvent the wheel, I
started looking for a solution that I suspected was out there. In early 2000, I
found Lucene, the missing piece I’d been looking for, and I fell in love with it.

 I joined the Lucene project early on when it still lived at SourceForge and,
later, at the Apache Software Foundation when Lucene migrated there in 2002.
My devotion to Lucene stems from its being a core component of many ideas that
had queued up in my mind over the years. One of those ideas was Simpy, my lat-
est pet project. Simpy is a feature-rich personal web service that lets users tag,
index, search, and share information found online. It makes heavy use of Lucene,
with thousands of its indexes, and is powered by Nutch, another project of Doug
Cutting’s (see chapter 10). My active participation in the Lucene project resulted
in an offer from Manning to co-author Lucene in Action with Erik Hatcher.

 Lucene in Action is the most comprehensive source of information about
Lucene. The information contained in the next 10 chapters encompasses all the
knowledge you need to create sophisticated applications built on top of Lucene.
It’s the result of a very smooth and agile collaboration process, much like that
within the Lucene community. Lucene and Lucene in Action exemplify what peo-
ple can achieve when they have similar interests, the willingness to be flexible,
and the desire to contribute to the global knowledge pool, despite the fact that
they have yet to meet in person.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

acknowledgments
First and foremost, we thank our spouses, Carole (Erik) and Margaret (Otis),
for enduring the authoring of this book. Without their support, this book
would never have materialized. Erik thanks his two sons, Ethan and Jakob, for
their patience and understanding when Dad worked on this book instead of
playing with them.

 We are sincerely and humbly indebted to Doug Cutting. Without Doug’s
generosity to the world, there would be no Lucene. Without the other
Lucene committers, Lucene would have far fewer features, more bugs, and a
much tougher time thriving with the growing adoption of Lucene. Many
thanks to all the committers including Peter Carlson, Tal Dayan, Scott
Ganyo, Eugene Gluzberg, Brian Goetz, Christoph Goller, Mark Harwood,
Tim Jones, Daniel Naber, Andrew C. Oliver, Dmitry Serebrennikov, Kelvin
Tan, and Matt Tucker. Similarly, we thank all those who contributed the case
studies that appear in chapter 10: Dion Almaer, Michael Cafarella, Bob Car-
penter, Karsten Konrad, Terence Parr, Robert Selvaraj, Ralf Steinbach,
Holger Stenzhorn, and Craig Walls.

 Our thanks to the staff at Manning, including Marjan Bace, Lianna Wla-
suik, Karen Tegtmeyer, Susannah Pfalzer, Mary Piergies, Leslie Haimes, David
Roberson, Lee Fitzpatrick, Ann Navarro, Clay Andres, Tiffany Taylor, Denis
Dalinnik, and Susan Forsyth.
xxii

Licensed to Jason Ruesch <krhonos713@hotmail.com>

ACKNOWLEDGMENTS xxiii
 Manning rounded up a great set of reviewers, whom we thank for improving
our drafts into what you now read. The reviewers include Doug Warren, Scott
Ganyo, Bill Fly, Oliver Zeigermann, Jack Hagan, Michael Oliver, Brian Goetz,
Ryan Cox, John D. Mitchell, and Norman Richards. Terry Steichen provided
informal feedback, helping clear up some rough spots. Extra-special thanks go
to Brian Goetz for his technical editing.

Erik Hatcher
I personally thank Otis for his efforts with this book. Although we’ve yet to meet
in person, Otis has been a joy to work with. He and I have gotten along well and
have agreed on the structure and content on this book throughout.

 Thanks to Java Java in Charlottesville, Virginia for keeping me wired and
wireless; thanks, also, to Greenberry’s for staying open later than Java Java and
keeping me out of trouble by not having Internet access (update: they now have
wi-fi, much to the dismay of my productivity).

 The people I’ve surrounded myself with enrich my life more than anything.
David Smith has been a life-long mentor, and his brilliance continues to chal-
lenge me; he gave me lots of food for thought regarding Lucene visualization
(most of which I’m still struggling to fully grasp, and I apologize that it didn’t
make it into this manuscript). Jay Zimmerman and the No Fluff, Just Stuff sym-
posium circuit have been dramatically influential for me. The regular NFJS
speakers, including Dave Thomas, Stuart Halloway, James Duncan Davidson,
Jason Hunter, Ted Neward, Ben Galbraith, Glenn Vanderburg, Venkat Subrama-
niam, Craig Walls, and Bruce Tate have all been a great source of support and
friendship. Rick Hightower and Nick Lesiecki deserve special mention—they
both were instrumental in pushing me beyond the limits of my technical and
communication abilities. Words do little to express the tireless enthusiasm and
encouragement Mike Clark has given me throughout writing Lucene in Action.
Technically, Mike contributed the JUnitPerf performance-testing examples, but
his energy, ambition, and friendship were far more pivotal.

 I extend gratitude to Darden Solutions for working with me through my tir-
ing book and travel schedule and allowing me to keep a low-stress part-time day
job. A Darden co-worker, Dave Engler, provided the CellPhone skeleton Swing
application that I’ve demonstrated at NFJS sessions and JavaOne and that is
included in section 8.6.3; thanks, Dave! Other Darden coworkers, Andrew Shan-
non and Nick Skriloff, gave us insight into Verity, a competitive solution to using
Lucene. Amy Moore provided graphical insight. My great friend Davie Murray
patiently created figure 4.4, enduring several revision requests. Daniel Steinberg
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxiv ACKNOWLEDGMENTS
is a personal friend and mentor, and he allowed me to air Lucene ideas as arti-
cles at java.net. Simon Galbraith, a great friend and now a search guru, and I
had fun bouncing search ideas around in email.

Otis Gospodnetic
Writing Lucene in Action was a big effort for me, not only because of the technical
content it contains, but also because I had to fit it in with a full-time day job, side
pet projects, and of course my personal life. Somebody needs to figure out how
to extend days to at least 48 hours. Working with Erik was a pleasure: His agile
development skills are impressive, his flexibility and compassion admirable.

 I hate cheesy acknowledgements, but I really can’t thank Margaret enough
for being so supportive and patient with me. I owe her a lifetime supply of tea
and rice. My parents Sanja and Vito opened my eyes early in my childhood by
showing me as much of the world as they could, and that made a world of differ-
ence. They were also the ones who suggested I write my first book, which elimi-
nated the fear of book-writing early in my life.

 I also thank John Stewart and the rest of Wireless Generation, Inc., my
employer, for being patient with me over the last year. If you buy a copy of the
book, I’ll thank you, too!
Licensed to Jason Ruesch <krhonos713@hotmail.com>

about this book
Lucene in Action delivers details, best practices, caveats, tips, and tricks for
using the best open-source Java search engine available.

 This book assumes the reader is familiar with basic Java programming.
Lucene itself is a single Java Archive (JAR) file and integrates into the simplest
Java stand-alone console program as well as the most sophisticated enterprise
application.

Roadmap

We organized part 1 of this book to cover the core Lucene Application Pro-
gramming Interface (API) in the order you’re likely to encounter it as you inte-
grate Lucene into your applications:

■ In chapter 1, you meet Lucene. We introduce some basic information-
retrieval terminology, and we note Lucene’s primary competition. With-
out wasting any time, we immediately build simple indexing and
searching applications that you can put right to use or adapt to your
needs. This example application opens the door for exploring the rest
of Lucene’s capabilities.

■ Chapter 2 familiarizes you with Lucene’s basic indexing operations. We
describe the various field types and techniques for indexing numbers
xxv

Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxvi ABOUT THIS BOOK
and dates. Tuning the indexing process, optimizing an index, and how to
deal with thread-safety are covered.

■ Chapter 3 takes you through basic searching, including details of how
Lucene ranks documents based on a query. We discuss the fundamental
query types as well as how they can be created through human-entered
query expressions.

■ Chapter 4 delves deep into the heart of Lucene’s indexing magic, the anal-
ysis process. We cover the analyzer building blocks including tokens, token
streams, and token filters. Each of the built-in analyzers gets its share of
attention and detail. We build several custom analyzers, showcasing syn-
onym injection and metaphone (like soundex) replacement. Analysis of
non-English languages is given attention, with specific examples of analyz-
ing Chinese text.

■ Chapter 5 picks up where the searching chapter left off, with analysis now
in mind. We cover several advanced searching features, including sorting,
filtering, and leveraging term vectors. The advanced query types make
their appearance, including the spectacular SpanQuery family. Finally, we
cover Lucene’s built-in support for query multiple indexes, even in parallel
and remotely.

■ Chapter 6 goes well beyond advanced searching, showing you how to
extend Lucene’s searching capabilities. You’ll learn how to customize
search results sorting, extend query expression parsing, implement hit col-
lecting, and tune query performance. Whew!

Part 2 goes beyond Lucene’s built-in facilities and shows you what can be done
around and above Lucene:

■ In chapter 7, we create a reusable and extensible framework for parsing
documents in Word, HTML, XML, PDF, and other formats.

■ Chapter 8 includes a smorgasbord of extensions and tools around Lucene.
We describe several Lucene index viewing and developer tools as well as
the many interesting toys in Lucene’s Sandbox. Highlighting search terms
is one such Sandbox extension that you’ll likely need, along with other
goodies like building an index from an Ant build process, using noncore
analyzers, and leveraging the WordNet synonym index.

■ Chapter 9 demonstrates the ports of Lucene to various languages, such as
C++, C#, Perl, and Python.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

ABOUT THIS BOOK xxvii
■ Chapter 10 brings all the technical details of Lucene back into focus with
many wonderful case studies contributed by those who have built interest-
ing, fast, and scalable applications with Lucene at their core.

Who should read this book?

Developers who need powerful search capabilities embedded in their applica-
tions should read this book. Lucene in Action is also suitable for developers who are
curious about Lucene or indexing and search techniques, but who may not have
an immediate need to use it. Adding Lucene know-how to your toolbox is valu-
able for future projects—search is a hot topic and will continue to be in the future.

 This book primarily uses the Java version of Lucene (from Apache Jakarta),
and the majority of the code examples use the Java language. Readers familiar
with Java will be right at home. Java expertise will be helpful; however, Lucene
has been ported to a number of other languages including C++, C#, Python,
and Perl. The concepts, techniques, and even the API itself are comparable
between the Java and other language versions of Lucene.

Code examples

The source code for this book is available from Manning’s website at http://
www.manning.com/hatcher2. Instructions for using this code are provided in the
README file included with the source-code package.

 The majority of the code shown in this book was written by us and is included
in the source-code package. Some code (particularly the case-study code) isn’t
provided in our source-code package; the code snippets shown there are owned
by the contributors and are donated as is. In a couple of cases, we have included
a small snippet of code from Lucene’s codebase, which is licensed under the
Apache Software License (http://www.apache.org/licenses/LICENSE-2.0).

 Code examples don’t include package and import statements, to conserve
space; refer to the actual source code for these details.

Why JUnit?
We believe code examples in books should be top-notch quality and real-world
applicable. The typical “hello world” examples often insult our intelligence and
generally do little to help readers see how to really adapt to their environment.

 We’ve taken a unique approach to the code examples in Lucene in Action.
Many of our examples are actual JUnit test cases (http://www.junit.org). JUnit,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxviii ABOUT THIS BOOK
the de facto Java unit-testing framework, easily allows code to assert that a par-
ticular assumption works as expected in a repeatable fashion. Automating JUnit
test cases through an IDE or Ant allows one-step (or no steps with continuous
integration) confidence building. We chose to use JUnit in this book because we
use it daily in our other projects and want you to see how we really code. Test
Driven Development (TDD) is a development practice we strongly espouse.

 If you’re unfamiliar with JUnit, please read the following primer. We also
suggest that you read Pragmatic Unit Testing in Java with JUnit by Dave Thomas
and Andy Hunt, followed by Manning’s JUnit in Action by Vincent Massol and
Ted Husted.

JUnit primer
This section is a quick and admittedly incomplete introduction to JUnit. We’ll
provide the basics needed to understand our code examples. First, our JUnit test
cases extend junit.framework.TestCase and many extend it indirectly through
our custom LiaTestCase base class. Our concrete test classes adhere to a naming
convention: we suffix class names with Test. For example, our QueryParser tests
are in QueryParserTest.java.

 JUnit runners automatically execute all methods with the signature public
void testXXX(), where XXX is an arbitrary but meaningful name. JUnit test
methods should be concise and clear, keeping good software design in mind
(such as not repeating yourself, creating reusable functionality, and so on).

Assertions
JUnit is built around a set of assert statements, freeing you to code tests clearly
and letting the JUnit framework handle failed assumptions and reporting the
details. The most frequently used assert statement is assertEquals; there are a
number of overloaded variants of the assertEquals method signature for various
data types. An example test method looks like this:

public void testExample() {
 SomeObject obj = new SomeObject();
 assertEquals(10, obj.someMethod());
}

The assert methods throw a runtime exception if the expected value (10, in this
example) isn’t equal to the actual value (the result of calling someMethod on obj, in
this example). Besides assertEquals, there are several other assert methods for
convenience. We also use assertTrue(expression), assertFalse(expression),
and assertNull(expression) statements. These test whether the expression is
true, false, and null, respectively.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

ABOUT THIS BOOK xxix
 The assert statements have overloaded signatures that take an additional
String parameter as the first argument. This String argument is used entirely for
reporting purposes, giving the developer more information when a test fails. We
use this String message argument to be more descriptive (or sometimes comical).

 By coding our assumptions and expectations in JUnit test cases in this man-
ner, we free ourselves from the complexity of the large systems we build and can
focus on fewer details at a time. With a critical mass of test cases in place, we can
remain confident and agile. This confidence comes from knowing that changing
code, such as optimizing algorithms, won’t break other parts of the system,
because if it did, our automated test suite would let us know long before the code
made it to production. Agility comes from being able to keep the codebase clean
through refactoring. Refactoring is the art (or is it a science?) of changing the
internal structure of the code so that it accommodates evolving requirements
without affecting the external interface of a system.

JUnit in context
Let’s take what we’ve said so far about JUnit and frame it within the context of
this book. JUnit test cases ultimately extend from junit.framework.TestCase,
and test methods have the public void testXXX() signature. One of our test
cases (from chapter 3) is shown here:

public class BasicSearchingTest extends LiaTestCase {

 public void testTerm() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Term t = new Term(“subject”, “ant”);
 Query query = new TermQuery(t);
 Hits hits = searcher.search(query);
 assertEquals(“JDwA”, 1, hits.length());

 t = new Term(“subject”, “junit”);
 hits = searcher.search(new TermQuery(t));
 assertEquals(2, hits.length());

 searcher.close();
 }
}

Of course, we’ll explain the Lucene API used in this test case later. Here we’ll
focus on the JUnit details. A variable used in testTerm, directory, isn’t defined
in this class. JUnit provides an initialization hook that executes prior to every
test method; this hook is a method with the public void setUp() signature. Our
LiaTestCase base class implements setUp in this manner:

LiaTestCase extends
junit.framework.
TestCase

directory comes
from LiaTestCase

One hit expected for
search for “ant”

Two hits expected
for “junit”
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxx ABOUT THIS BOOK
public abstract class LiaTestCase extends TestCase {
 private String indexDir = System.getProperty(“index.dir”);
 protected Directory directory;

 protected void setUp() throws Exception {
 directory = FSDirectory.getDirectory(indexDir, false);
 }
}

If our first assert in testTerm fails, we see an exception like this:

junit.framework.AssertionFailedError: JDwA expected:<1> but was:<0>
 at lia.searching.BasicSearchingTest.
➾ testTerm(BasicSearchingTest.java:20)

This failure indicates our test data is different than what we expect.

Testing Lucene
The majority of the tests in this book test Lucene itself. In practice, is this realis-
tic? Isn’t the idea to write test cases that test our own code, not the libraries them-
selves? There is an interesting twist to Test Driven Development used for learning
an API: Test Driven Learning. It’s immensely helpful to write tests directly to a
new API in order to learn how it works and what you can expect from it. This is
precisely what we’ve done in most of our code examples, so that tests are testing
Lucene itself. Don’t throw these learning tests away, though. Keep them around
to ensure your expectations of the API hold true when you upgrade to a new ver-
sion of the API, and refactor them when the inevitable API change is made.

Mock objects
In a couple of cases, we use mock objects for testing purposes. Mock objects are
used as probes sent into real business logic in order to assert that the business
logic is working properly. For example, in chapter 4, we have a SynonymEngine
interface (see section 4.6). The real business logic that uses this interface is an
analyzer. When we want to test the analyzer itself, it’s unimportant what type of
SynonymEngine is used, but we want to use one that has well defined and predict-
able behavior. We created a MockSynonymEngine, allowing us to reliably and pre-
dictably test our analyzer. Mock objects help simplify test cases such that they test
only a single facet of a system at a time rather than having intertwined depen-
dencies that lead to complexity in troubleshooting what really went wrong when
a test fails. A nice effect of using mock objects comes from the design changes it
leads us to, such as separation of concerns and designing using interfaces instead
of direct concrete implementations.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

ABOUT THIS BOOK xxxi
Our test data
Most of our book revolves around a common set of example data to provide con-
sistency and avoid having to grok an entirely new set of data for each section.
This example data consists of book details. Table 1 shows the data so that you
can reference it and make sense of our examples.

The data, besides the fields shown in the table, includes fields for ISBN, URL,
and publication month. The fields for category and subject are our own subjec-
tive values, but the other information is objectively factual about the books.

Table 1 Sample data used throughout this book

Title / Author Category Subject

A Modern Art of Education
Rudolf Steiner

/education/pedagogy education philosophy
psychology practice Waldorf

Imperial Secrets of Health
and Longevity
Bob Flaws

/health/alternative/Chinese diet chinese medicine qi
gong health herbs

Tao Te Ching 道德經

Stephen Mitchell
/philosophy/eastern taoism

Gödel, Escher, Bach:
an Eternal Golden Braid
Douglas Hofstadter

/technology/computers/ai artificial intelligence number
theory mathematics music

Mindstorms
Seymour Papert

/technology/computers/programming/
education

children computers powerful
ideas LOGO education

Java Development with Ant
Erik Hatcher, Steve Loughran

/technology/computers/programming apache jakarta ant build tool
junit java development

JUnit in Action
Vincent Massol, Ted Husted

/technology/computers/programming junit unit testing mock
objects

Lucene in Action
Otis Gospodnetic, Erik Hatcher

/technology/computers/programming lucene search

Extreme Programming Explained
Kent Beck

/technology/computers/programming/
methodology

extreme programming agile
test driven development
methodology

Tapestry in Action
Howard Lewis-Ship

/technology/computers/programming tapestry web user interface
components

The Pragmatic Programmer
Dave Thomas, Andy Hunt

/technology/computers/programming pragmatic agile methodology
developer tools
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxxii ABOUT THIS BOOK
Code conventions and downloads

Source code in listings or in text is in a fixed width font to separate it from
ordinary text. Java method names, within text, generally won’t include the full
method signature.

 In order to accommodate the available page space, code has been formatted
with a limited width, including line continuation markers where appropriate.

 We don’t include import statements and rarely refer to fully qualified class
names—this gets in the way and takes up valuable space. Refer to Lucene’s Java-
docs for this information. All decent IDEs have excellent support for automatically
adding import statements; Erik blissfully codes without knowing fully qualified
classnames using IDEA IntelliJ, and Otis does the same with XEmacs. Add the
Lucene JAR to your project’s classpath, and you’re all set. Also on the classpath
issue (which is a notorious nuisance), we assume that the Lucene JAR and any
other necessary JARs are available in the classpath and don’t show it explicitly.

 We’ve created a lot of examples for this book that are freely available to you.
A .zip file of all the code is available from Manning’s web site for Lucene in
Action: http://www.manning.com/hatcher2. Detailed instructions on running the
sample code are provided in the main directory of the expanded archive as a
README file.

Author online

The purchase of Lucene in Action includes free access to a private web forum run
by Manning Publications, where you can discuss the book with the authors and
other readers. To access the forum and subscribe to it, point your web browser to
http://www.manning.com/hatcher2. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the
rules of conduct on the forum.

About the authors

Erik Hatcher codes, writes, and speaks on technical topics that he finds fun and
challenging. He has written software for a number of diverse industries using
many different technologies and languages. Erik coauthored Java Development
with Ant (Manning, 2002) with Steve Loughran, a book that has received wonder-
ful industry acclaim. Since the release of Erik’s first book, he has spoken at
numerous venues including the No Fluff, Just Stuff symposium circuit, JavaOne,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

ABOUT THIS BOOK xxxiii

O’Reilly’s Open Source Convention, the Open Source Content Management
Conference, and many Java User Group meetings. As an Apache Software Foun-
dation member, he is an active contributor and committer on several Apache
projects including Lucene, Ant, and Tapestry. Erik currently works at the Univer-
sity of Virginia’s Humanities department supporting Applied Research in Patac-
riticism. He lives in Charlottesville, Virginia with his beautiful wife, Carole, and
two astounding sons, Ethan and Jakob.

 Otis Gospodnetic has been an active Lucene developer for four years and
maintains the jGuru Lucene FAQ. He is a Software Engineer at Wireless Genera-
tion, a company that develops technology solutions for educational assessments
of students and teachers. In his spare time, he develops Simpy, a Personal Web
service that uses Lucene, which he created out of his passion for knowledge,
information retrieval, and management. Previous technical publications include
several articles about Lucene, published by O’Reilly Network and IBM develop-
erWorks. Otis also wrote To Choose and Be Chosen: Pursuing Education in America, a
guidebook for foreigners wishing to study in the United States; it’s based on his
own experience. Otis is from Croatia and currently lives in New York City.

About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

xxxiv ABOUT THIS BOOK
About the cover illustration

The figure on the cover of Lucene in Action is “An inhabitant of the coast of Syria.”
The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London.
The title page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English
and French, and each illustration bears the names of two artists who worked on
it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book…two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an Ameri-
can based in Ankara, Turkey, and the transaction took place just as he was
packing up his stand for the day. The Manning editor did not have on his person
the substantial amount of cash that was required for the purchase and a credit
card and check were both politely turned down.

 With the seller flying back to Ankara that evening the situation was getting
hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out
with the seller’s bank information on a piece of paper and the portfolio of
images under his arm. Needless to say, we transferred the funds the next day,
and we remain grateful and impressed by this unknown person’s trust in one of
us. It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional
life of two centuries ago‚ brought back to life by the pictures from this collection.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Part 1

Core Lucene

The first half of this book covers out-of-the-box (errr… out of the JAR)
Lucene. You’ll “Meet Lucene” with a general overview and develop a complete
indexing and searching application. Each successive chapter systematically
delves into specific areas. “Indexing” data and documents and subsequently
“Searching” for them are the first steps to using Lucene. Returning to a
glossed-over indexing process, “Analysis,” will fill in your understanding of
what happens to the text indexed with Lucene. Searching is where Lucene
really shines: This section concludes with “Advanced searching” techniques
using only the built-in features, and “Extending search” showcasing Lucene’s
extensibility for custom purposes.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Meet Lucene

This chapter covers
■ Understanding Lucene
■ Using the basic indexing API
■ Working with the search API
■ Considering alternative products
3

Licensed to Jason Ruesch <krhonos713@hotmail.com>

4 CHAPTER 1
Meet Lucene
One of the key factors behind Lucene’s popularity and success is its simplicity.
The careful exposure of its indexing and searching API is a sign of the well-
designed software. Consequently, you don’t need in-depth knowledge about how
Lucene’s information indexing and retrieval work in order to start using it.
Moreover, Lucene’s straightforward API requires you to learn how to use only a
handful of its classes.

 In this chapter, we show you how to perform basic indexing and searching
with Lucene with ready-to-use code examples. We then briefly introduce all the
core elements you need to know for both of these processes. We also provide
brief reviews of competing Java/non-Java, free, and commercial products.

1.1 Evolution of information organization and access

In order to make sense of the perceived complexity of the world, humans have
invented categorizations, classifications, genuses, species, and other types of
hierarchical organizational schemes. The Dewey decimal system for categorizing
items in a library collection is a classic example of a hierarchical categorization
scheme. The explosion of the Internet and electronic data repositories has
brought large amounts of information within our reach. Some companies, such
as Yahoo!, have made organization and classification of online data their busi-
ness. With time, however, the amount of data available has become so vast that
we needed alternate, more dynamic ways of finding information. Although we
can classify data, trawling through hundreds or thousands of categories and sub-
categories of data is no longer an efficient method for finding information.

 The need to quickly locate information in the sea of data isn’t limited to the
Internet realm—desktop computers can store increasingly more data. Changing
directories and expanding and collapsing hierarchies of folders isn’t an effective
way to access stored documents. Furthermore, we no longer use computers just
for their raw computing abilities: They also serve as multimedia players and
media storage devices. Those uses for computers require the ability to quickly
find a specific piece of data; what’s more, we need to make rich media—such as
images, video, and audio files in various formats—easy to locate.

 With this abundance of information, and with time being one of the most pre-
cious commodities for most people, we need to be able to make flexible, free-
form, ad-hoc queries that can quickly cut across rigid category boundaries and
find exactly what we’re after while requiring the least effort possible.

 To illustrate the pervasiveness of searching across the Internet and the desk-
top, figure 1.1 shows a search for lucene at Google. The figure includes a context
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Evolution of information access 5
menu that lets us use Google to search for the highlighted text. Figure 1.2 shows
the Apple Mac OS X Finder (the counterpart to Microsoft’s Explorer on Win-
dows) and the search feature embedded at upper right. The Mac OS X music
player, iTunes, also has embedded search capabilities, as shown in figure 1.3.

 Search functionality is everywhere! All major operating systems have embed-
ded searching. The most recent innovation is the Spotlight feature (http://
www.apple.com/macosx/tiger/spotlighttech.html) announced by Steve Jobs in the

Figure 1.1 Convergence of Internet searching with Google and the web browser.

Figure 1.2 Mac OS X Finder with its embedded search capability.

Figure 1.3 Apple’s iTunes intuitively embeds search functionality.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

6 CHAPTER 1
Meet Lucene
next version of Mac OS X (nicknamed Tiger); it integrates indexing and search-
ing across all file types including rich metadata specific to each type of file, such
as emails, contacts, and more.1

 Google has gone IPO. Microsoft has released a beta version of its MSN search
engine; on a potentially related note, Microsoft acquired Lookout, a product
leveraging the Lucene.Net port of Lucene to index and search Microsoft Out-
look email and personal folders (as shown in figure 1.4). Yahoo! purchased Over-
ture and is beefing up its custom search capabilities.

 To understand what role Lucene plays in search, let’s start from the basics and
learn about what Lucene is and how it can help you with your search needs.

1.2 Understanding Lucene

Different people are fighting the same problem—information overload—using
different approaches. Some have been working on novel user interfaces, some on
intelligent agents, and others on developing sophisticated search tools like
Lucene. Before we jump into action with code samples later in this chapter, we’ll
give you a high-level picture of what Lucene is, what it is not, and how it came to be.

1 Erik freely admits to his fondness of all things Apple.

Figure 1.4 Microsoft’s newly acquired Lookout product, using Lucene.Net underneath.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding Lucene 7
1.2.1 What Lucene is

Lucene is a high performance, scalable Information Retrieval (IR) library. It lets
you add indexing and searching capabilities to your applications. Lucene is a
mature, free, open-source project implemented in Java; it’s a member of the
popular Apache Jakarta family of projects, licensed under the liberal Apache
Software License. As such, Lucene is currently, and has been for a few years, the
most popular free Java IR library.

NOTE Throughout the book, we’ll use the term Information Retrieval (IR) to
describe search tools like Lucene. People often refer to IR libraries as search
engines, but you shouldn’t confuse IR libraries with web search engines.

As you’ll soon discover, Lucene provides a simple yet powerful core API that
requires minimal understanding of full-text indexing and searching. You need to
learn about only a handful of its classes in order to start integrating Lucene into
an application. Because Lucene is a Java library, it doesn’t make assumptions
about what it indexes and searches, which gives it an advantage over a number of
other search applications.

 People new to Lucene often mistake it for a ready-to-use application like a
file-search program, a web crawler, or a web site search engine. That isn’t what
Lucene is: Lucene is a software library, a toolkit if you will, not a full-featured
search application. It concerns itself with text indexing and searching, and it
does those things very well. Lucene lets your application deal with business rules
specific to its problem domain while hiding the complexity of indexing and
searching implementation behind a simple-to-use API. You can think of Lucene
as a layer that applications sit on top of, as depicted in figure 1.5.

 A number of full-featured search applications have been built on top of
Lucene. If you’re looking for something prebuilt or a framework for crawling,
document handling, and searching, consult the Lucene Wiki “powered by” page
(http://wiki.apache.org/jakarta-lucene/PoweredBy) for many options: Zilverline,
SearchBlox, Nutch, LARM, and jSearch, to name a few. Case studies of both
Nutch and SearchBlox are included in chapter 10.

1.2.2 What Lucene can do for you

Lucene allows you to add indexing and searching capabilities to your applications
(these functions are described in section 1.3). Lucene can index and make search-
able any data that can be converted to a textual format. As you can see in figure 1.5,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

8 CHAPTER 1
Meet Lucene
Lucene doesn’t care about the source of the data, its format, or even its language,
as long as you can convert it to text. This means you can use Lucene to index and
search data stored in files: web pages on remote web servers, documents stored in
local file systems, simple text files, Microsoft Word documents, HTML or PDF
files, or any other format from which you can extract textual information.

 Similarly, with Lucene’s help you can index data stored in your databases, giv-
ing your users full-text search capabilities that many databases don’t provide.
Once you integrate Lucene, users of your applications can make searches such as
+George +Rice -eat -pudding, Apple –pie +Tiger, animal:monkey AND
food:banana, and so on. With Lucene, you can index and search email messages,
mailing-list archives, instant messenger chats, your Wiki pages … the list goes on.

Figure 1.5 A typical application integration with Lucene
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding Lucene 9
1.2.3 History of Lucene

Lucene was originally written by Doug Cutting;2 it was initially available for
download from its home at the SourceForge web site. It joined the Apache Soft-
ware Foundation’s Jakarta family of high-quality open source Java products in
September 2001. With each release since then, the project has enjoyed increased
visibility, attracting more users and developers. As of July 2004, Lucene version 1.4
has been released, with a bug fix 1.4.2 release in early October. Table 1.1 shows
Lucene’s release history.

NOTE Lucene’s creator, Doug Cutting, has significant theoretical and practical
experience in the field of IR. He’s published a number of research
papers on various IR topics and has worked for companies such as
Excite, Apple, and Grand Central. Most recently, worried about the
decreasing number of web search engines and a potential monopoly in
that realm, he created Nutch, the first open-source World-Wide Web
search engine (http://www.nutch.org); it’s designed to handle crawling,
indexing, and searching of several billion frequently updated web pages.
Not surprisingly, Lucene is at the core of Nutch; section 10.1 includes a
case study of how Nutch leverages Lucene.

2 Lucene is Doug’s wife’s middle name; it’s also her maternal grandmother’s first name.

Table 1.1 Lucene’s release history

Version Release date Milestones

0.01 March 2000 First open source release (SourceForge)

1.0 October 2000

1.01b July 2001 Last SourceForge release

1.2 June 2002 First Apache Jakarta release

1.3 December 2003 Compound index format, QueryParser enhancements, remote
searching, token positioning, extensible scoring API

1.4 July 2004 Sorting, span queries, term vectors

1.4.1 August 2004 Bug fix for sorting performance

1.4.2 October 2004 IndexSearcher optimization and misc. fixes

1.4.3 Winter 2004 Misc. fixes
Licensed to Jason Ruesch <krhonos713@hotmail.com>

10 CHAPTER 1
Meet Lucene
Doug Cutting remains the main force behind Lucene, but more bright minds
have joined the project since Lucene’s move under the Apache Jakarta umbrella.
At the time of this writing, Lucene’s core team includes about half a dozen active
developers, two of whom are authors of this book. In addition to the official
project developers, Lucene has a fairly large and active technical user community
that frequently contributes patches, bug fixes, and new features.

1.2.4 Who uses Lucene

Who doesn’t? In addition to those organizations mentioned on the Powered by
Lucene page on Lucene’s Wiki, a number of other large, well-known, multina-
tional organizations are using Lucene. It provides searching capabilities for the
Eclipse IDE, the Encyclopedia Britannica CD-ROM/DVD, FedEx, the Mayo Clinic,
Hewlett-Packard, New Scientist magazine, Epiphany, MIT’s OpenCourseware and
DSpace, Akamai’s EdgeComputing platform, and so on. Your name will be on
this list soon, too.

1.2.5 Lucene ports: Perl, Python, C++, .NET, Ruby

One way to judge the success of open source software is by the number of times
it’s been ported to other programming languages. Using this metric, Lucene is
quite a success! Although the original Lucene is written in Java, as of this writing
Lucene has been ported to Perl, Python, C++, and .NET, and some groundwork
has been done to port it to Ruby. This is excellent news for developers who need
to access Lucene indices from applications written in different languages. You
can learn more about some of these ports in chapter 9.

1.3 Indexing and searching

At the heart of all search engines is the concept of indexing: processing the
original data into a highly efficient cross-reference lookup in order to facilitate
rapid searching. Let’s take a quick high-level look at both the indexing and
searching processes.

1.3.1 What is indexing, and why is it important?

Suppose you needed to search a large number of files, and you wanted to be able
to find files that contained a certain word or a phrase. How would you go about
writing a program to do this? A naïve approach would be to sequentially scan
each file for the given word or phrase. This approach has a number of flaws, the
most obvious of which is that it doesn’t scale to larger file sets or cases where files
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene in action: a sample application 11
are very large. This is where indexing comes in: To search large amounts of text
quickly, you must first index that text and convert it into a format that will let you
search it rapidly, eliminating the slow sequential scanning process. This conver-
sion process is called indexing, and its output is called an index.

 You can think of an index as a data structure that allows fast random access to
words stored inside it. The concept behind it is analogous to an index at the end
of a book, which lets you quickly locate pages that discuss certain topics. In the
case of Lucene, an index is a specially designed data structure, typically stored
on the file system as a set of index files. We cover the structure of index files in
detail in appendix B, but for now just think of a Lucene index as a tool that
allows quick word lookup.

1.3.2 What is searching?

Searching is the process of looking up words in an index to find documents where
they appear. The quality of a search is typically described using precision and
recall metrics. Recall measures how well the search system finds relevant docu-
ments, whereas precision measures how well the system filters out the irrelevant
documents. However, you must consider a number of other factors when think-
ing about searching. We already mentioned speed and the ability to quickly
search large quantities of text. Support for single and multiterm queries, phrase
queries, wildcards, result ranking, and sorting are also important, as is a friendly
syntax for entering those queries. Lucene’s powerful software library offers a
number of search features, bells, and whistles—so many that we had to spread
our search coverage over three chapters (chapters 3, 5, and 6).

1.4 Lucene in action: a sample application

Let’s see Lucene in action. To do that, recall the problem of indexing and search-
ing files, which we described in section 1.3.1. Furthermore, suppose you need to
index and search files stored in a directory tree, not just in a single directory. To
show you Lucene’s indexing and searching capabilities, we’ll use a pair of command-
line applications: Indexer and Searcher. First we’ll index a directory tree contain-
ing text files; then we’ll search the created index.

 These example applications will familiarize you with Lucene’s API, its ease of
use, and its power. The code listings are complete, ready-to-use command-line
programs. If file indexing/searching is the problem you need to solve, then you
can copy the code listings and tweak them to suit your needs. In the chapters
that follow, we’ll describe each aspect of Lucene’s use in much greater detail.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

12 CHAPTER 1
Meet Lucene
 Before we can search with Lucene, we need to build an index, so we start with
our Indexer application.

1.4.1 Creating an index

In this section you’ll see a single class called Indexer and its four static methods;
together, they recursively traverse file system directories and index all files with a
.txt extension. When Indexer completes execution it leaves behind a Lucene
index for its sibling, Searcher (presented in section 1.4.2).

 We don’t expect you to be familiar with the few Lucene classes and methods
used in this example—we’ll explain them shortly. After the annotated code listing,
we show you how to use Indexer; if it helps you to learn how Indexer is used before
you see how it’s coded, go directly to the usage discussion that follows the code.

Using Indexer to index text files
Listing 1.1 shows the Indexer command-line program. It takes two arguments:

■ A path to a directory where we store the Lucene index
■ A path to a directory that contains the files we want to index

/**
 * This code was originally written for
 * Erik's Lucene intro java.net article
 */
public class Indexer {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new Exception("Usage: java " + Indexer.class.getName()
 + " <index dir> <data dir>");
 }
 File indexDir = new File(args[0]);
 File dataDir = new File(args[1]);

 long start = new Date().getTime();
 int numIndexed = index(indexDir, dataDir);
 long end = new Date().getTime();

 System.out.println("Indexing " + numIndexed + " files took "
 + (end - start) + " milliseconds");
 }

 // open an index and start file directory traversal
 public static int index(File indexDir, File dataDir)
 throws IOException {

Listing 1.1 Indexer: traverses a file system and indexes .txt files

Create Lucene index
in this directory

Index files in
this directory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene in action: a sample application 13
 if (!dataDir.exists() || !dataDir.isDirectory()) {
 throw new IOException(dataDir
 + " does not exist or is not a directory");
 }

 IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(), true);
 writer.setUseCompoundFile(false);

 indexDirectory(writer, dataDir);

 int numIndexed = writer.docCount();
 writer.optimize();
 writer.close();
 return numIndexed;
 }

 // recursive method that calls itself when it finds a directory
 private static void indexDirectory(IndexWriter writer, File dir)
 throws IOException {

 File[] files = dir.listFiles();

 for (int i = 0; i < files.length; i++) {
 File f = files[i];
 if (f.isDirectory()) {
 indexDirectory(writer, f);
 } else if (f.getName().endsWith(".txt")) {
 indexFile(writer, f);
 }
 }
 }

 // method to actually index a file using Lucene
 private static void indexFile(IndexWriter writer, File f)
 throws IOException {

 if (f.isHidden() || !f.exists() || !f.canRead()) {
 return;
 }

 System.out.println("Indexing " + f.getCanonicalPath());

 Document doc = new Document();
 doc.add(Field.Text("contents", new FileReader(f)));

 doc.add(Field.Keyword("filename", f.getCanonicalPath()));
 writer.addDocument(doc);
 }
}

Create
Lucene index

 b

Close
index

Recurse c
Index .txt
files only

Index file
content

 d

Add document
to Lucene index

 f
Index
filename

 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

14 CHAPTER 1
Meet Lucene
Interestingly, the bulk of the code performs recursive directory traversal (c).
Only the creation and closing of the IndexWriter (b) and four lines in the
indexFile method (d, e, f) of Indexer involve the Lucene API—effectively six
lines of code.

 This example intentionally focuses on text files with .txt extensions to keep
things simple while demonstrating Lucene’s usage and power. In chapter 7, we’ll
show you how to handle nontext files, and we’ll develop a small ready-to-use frame-
work capable of parsing and indexing documents in several common formats.

Running Indexer
From the command line, we ran Indexer against a local working directory
including Lucene’s own source code. We instructed Indexer to index files under
the /lucene directory and store the Lucene index in the build/index directory:

% java lia.meetlucene.Indexer build/index/lucene

Indexing /lucene/build/test/TestDoc/test.txt
Indexing /lucene/build/test/TestDoc/test2.txt
Indexing /lucene/BUILD.txt
Indexing /lucene/CHANGES.txt
Indexing /lucene/LICENSE.txt
Indexing /lucene/README.txt
Indexing /lucene/src/jsp/README.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/
➾ stemsUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/test1251.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/testKOI8.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/
➾ testUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/
➾ wordsUnicode.txt
Indexing /lucene/todo.txt
Indexing 13 files took 2205 milliseconds

Indexer prints out the names of files it indexes, so you can see that it indexes
only files with the .txt extension.

NOTE If you’re running this application on a Windows platform command shell,
you need to adjust the command line’s directory and path separators.
The Windows command line is java build/index c:\lucene.

When it completes indexing, Indexer prints out the number of files it indexed and
the time it took to do so. Because the reported time includes both file-directory
traversal and indexing, you shouldn’t consider it an official performance measure.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene in action: a sample application 15
In our example, each of the indexed files was small, but roughly two seconds to
index a handful of text files is reasonably impressive.

 Indexing speed is a concern, and we cover it in chapter 2. But generally,
searching is of even greater importance.

1.4.2 Searching an index

Searching in Lucene is as fast and simple as indexing; the power of this function-
ality is astonishing, as chapters 3 and 5 will show you. For now, let’s look at
Searcher, a command-line program that we’ll use to search the index created by
Indexer. (Keep in mind that our Searcher serves the purpose of demonstrating
the use of Lucene’s search API. Your search application could also take a form of
a web or desktop application with a GUI, an EJB, and so on.)

 In the previous section, we indexed a directory of text files. The index, in this
example, resides in a directory of its own on the file system. We instructed
Indexer to create a Lucene index in a build/index directory, relative to the direc-
tory from which we invoked Indexer. As you saw in listing 1.1, this index contains
the indexed files and their absolute paths. Now we need to use Lucene to search
that index in order to find files that contain a specific piece of text. For instance,
we may want to find all files that contain the keyword java or lucene, or we may
want to find files that include the phrase “system requirements”.

Using Searcher to implement a search
The Searcher program complements Indexer and provides command-line
searching capability. Listing 1.2 shows Searcher in its entirety. It takes two
command-line arguments:

■ The path to the index created with Indexer
■ A query to use to search the index

/**
 * This code was originally written for
 * Erik's Lucene intro java.net article
 */
public class Searcher {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new Exception("Usage: java " + Searcher.class.getName()
 + " <index dir> <query>");
 }

Listing 1.2 Searcher: searches a Lucene index for a query passed as an argument
Licensed to Jason Ruesch <krhonos713@hotmail.com>

16 CHAPTER 1
Meet Lucene
 File indexDir = new File(args[0]);
 String q = args[1];

 if (!indexDir.exists() || !indexDir.isDirectory()) {
 throw new Exception(indexDir +
 " does not exist or is not a directory.");
 }

 search(indexDir, q);
 }

 public static void search(File indexDir, String q)
 throws Exception {
 Directory fsDir = FSDirectory.getDirectory(indexDir, false);
 IndexSearcher is = new IndexSearcher(fsDir);

 Query query = QueryParser.parse(q, "contents",
 new StandardAnalyzer());
 long start = new Date().getTime();
 Hits hits = is.search(query);
 long end = new Date().getTime();

 System.err.println("Found " + hits.length() +
 " document(s) (in " + (end - start) +
 " milliseconds) that matched query '" +
 q + "':");

 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);
 System.out.println(doc.get("filename"));
 }
 }
}

Searcher, like its Indexer sibling, has only a few lines of code dealing with
Lucene. A couple of special things occur in the search method,
We use Lucene’s IndexSearcher and FSDirectory classes to open our index for
searching.
We use QueryParser to parse a human-readable query into Lucene’s Query class.
Searching returns hits in the form of a Hits object.
Note that the Hits object contains only references to the underlying documents.
In other words, instead of being loaded immediately upon search, matches are
loaded from the index in a lazy fashion—only when requested with the hits.
doc(int) call.

Index directory
created by Indexer

Query string

Open index b

Parse query c

Search index d

Write search
stats

Retrieve matching document e
Display
filename

 b

 c
 d
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene in action: a sample application 17
Running Searcher
Let’s run Searcher and find some documents in our index using the query
'lucene':

%java lia.meetlucene.Searcher build/index 'lucene'

Found 6 document(s) (in 66 milliseconds) that matched
➾ query 'lucene':
/lucene/README.txt
/lucene/src/jsp/README.txt
/lucene/BUILD.txt
/lucene/todo.txt
/lucene/LICENSE.txt
/lucene/CHANGES.txt

The output shows that 6 of the 13 documents we indexed with Indexer contain
the word lucene and that the search took a meager 66 milliseconds. Because
Indexer stores files’ absolute paths in the index, Searcher can print them out. It’s
worth noting that storing the file path as a field was our decision and appropri-
ate in this case, but from Lucene’s perspective it’s arbitrary meta-data attached
to indexed documents.

 Of course, you can use more sophisticated queries, such as 'lucene AND doug'
or 'lucene AND NOT slow' or '+lucene +book', and so on. Chapters 3, 5, and 6
cover all different aspects of searching, including Lucene’s query syntax.

Using the xargs utility
The Searcher class is a simplistic demo of Lucene’s search features. As such, it
only dumps matches to the standard output. However, Searcher has one more
trick up its sleeve. Imagine that you need to find files that contain a certain key-
word or phrase, and then you want to process the matching files in some way. To
keep things simple, let’s imagine that you want to list each matching file using
the ls UNIX command, perhaps to see the file size, permission bits, or owner. By
having matching document paths written unadorned to the standard output,
and having the statistical output written to standard error, you can use the nifty
UNIX xargs utility to process the matched files, as shown here:

% java lia.meetlucene.Searcher build/index
➾ 'lucene AND NOT slow' | xargs ls -l

Found 6 document(s) (in 131 milliseconds) that
➾ matched query 'lucene AND NOT slow':
-rw-r--r-- 1 erik staff 4215 10 Sep 21:51 /lucene/BUILD.txt
-rw-r--r-- 1 erik staff 17889 28 Dec 10:53 /lucene/CHANGES.txt
-rw-r--r-- 1 erik staff 2670 4 Nov 2001 /lucene/LICENSE.txt
Licensed to Jason Ruesch <krhonos713@hotmail.com>

18 CHAPTER 1
Meet Lucene
-rw-r--r-- 1 erik staff 683 4 Nov 2001 /lucene/README.txt
-rw-r--r-- 1 erik staff 370 26 Jan 2002 /lucene/src/jsp/
➾ README.txt
-rw-r--r-- 1 erik staff 943 18 Sep 21:27 /lucene/todo.txt

In this example, we chose the Boolean query 'lucene AND NOT slow', which finds
all files that contain the word lucene and don’t contain the word slow. This query
took 131 milliseconds and found 6 matching files. We piped Searcher’s output to
the xargs command, which in turn used the ls –l command to list each match-
ing file. In a similar fashion, the matched files could be copied, concatenated,
emailed, or dumped to standard output.3

 Our example indexing and searching applications demonstrate Lucene in a
lot of its glory. Its API usage is simple and unobtrusive. The bulk of the code (and
this applies to all applications interacting with Lucene) is plumbing relating to
the business purpose—in this case, Indexer’s file system crawler that looks for
text files and Searcher’s code that prints matched filenames based on a query to
the standard output. But don’t let this fact, or the conciseness of the examples,
tempt you into complacence: There is a lot going on under the covers of Lucene,
and we’ve used quite a few best practices that come from experience. To effec-
tively leverage Lucene, it’s important to understand more about how it works
and how to extend it when the need arises. The remainder of this book is dedi-
cated to giving you these missing pieces.

1.5 Understanding the core indexing classes

As you saw in our Indexer class, you need the following classes to perform the
simplest indexing procedure:

■ IndexWriter

■ Directory

■ Analyzer

■ Document

■ Field

What follows is a brief overview of these classes, to give you a rough idea about
their role in Lucene. We’ll use these classes throughout this book.

3 Neal Stephenson details this process nicely in “In the Beginning Was the Command Line”: http://
www.cryptonomicon.com/beginning.html.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding the core indexing classes 19
1.5.1 IndexWriter

IndexWriter is the central component of the indexing process. This class creates
a new index and adds documents to an existing index. You can think of Index-
Writer as an object that gives you write access to the index but doesn’t let you read
or search it. Despite its name, IndexWriter isn’t the only class that’s used to modify
an index; section 2.2 describes how to use the Lucene API to modify an index.

1.5.2 Directory

The Directory class represents the location of a Lucene index. It’s an abstract
class that allows its subclasses (two of which are included in Lucene) to store the
index as they see fit. In our Indexer example, we used a path to an actual file system
directory to obtain an instance of Directory, which we passed to IndexWriter’s
constructor. IndexWriter then used one of the concrete Directory implementa-
tions, FSDirectory, and created our index in a directory in the file system.

 In your applications, you will most likely be storing a Lucene index on a disk.
To do so, use FSDirectory, a Directory subclass that maintains a list of real files
in the file system, as we did in Indexer.

 The other implementation of Directory is a class called RAMDirectory.
Although it exposes an interface identical to that of FSDirectory, RAMDirectory
holds all its data in memory. This implementation is therefore useful for smaller
indices that can be fully loaded in memory and can be destroyed upon the termi-
nation of an application. Because all data is held in the fast-access memory and
not on a slower hard disk, RAMDirectory is suitable for situations where you need
very quick access to the index, whether during indexing or searching. For
instance, Lucene’s developers make extensive use of RAMDirectory in all their
unit tests: When a test runs, a fast in-memory index is created or searched; and
when a test completes, the index is automatically destroyed, leaving no residuals
on the disk. Of course, the performance difference between RAMDirectory and
FSDirectory is less visible when Lucene is used on operating systems that cache
files in memory. You’ll see both Directory implementations used in code snip-
pets in this book.

1.5.3 Analyzer

Before text is indexed, it’s passed through an Analyzer. The Analyzer, specified
in the IndexWriter constructor, is in charge of extracting tokens out of text to be
indexed and eliminating the rest. If the content to be indexed isn’t plain text, it
should first be converted to it, as depicted in figure 2.1. Chapter 7 shows how to
Licensed to Jason Ruesch <krhonos713@hotmail.com>

20 CHAPTER 1
Meet Lucene
extract text from the most common rich-media document formats. Analyzer is
an abstract class, but Lucene comes with several implementations of it. Some of
them deal with skipping stop words (frequently used words that don’t help distin-
guish one document from the other, such as a, an, the, in, and on); some deal with
conversion of tokens to lowercase letters, so that searches aren’t case-sensitive;
and so on. Analyzers are an important part of Lucene and can be used for much
more than simple input filtering. For a developer integrating Lucene into an
application, the choice of analyzer(s) is a critical element of application design.
You’ll learn much more about them in chapter 4.

1.5.4 Document

A Document represents a collection of fields. You can think of it as a virtual docu-
ment—a chunk of data, such as a web page, an email message, or a text file—
that you want to make retrievable at a later time. Fields of a document represent
the document or meta-data associated with that document. The original source
(such as a database record, a Word document, a chapter from a book, and so on)
of document data is irrelevant to Lucene. The meta-data such as author, title,
subject, date modified, and so on, are indexed and stored separately as fields of
a document.

NOTE When we refer to a document in this book, we mean a Microsoft Word,
RTF, PDF, or other type of a document; we aren’t talking about Lucene’s
Document class. Note the distinction in the case and font.

Lucene only deals with text. Lucene’s core does not itself handle anything but
java.lang.String and java.io.Reader. Although various types of documents can
be indexed and made searchable, processing them isn’t as straightforward as pro-
cessing purely textual content that can easily be converted to a String or Reader
Java type. You’ll learn more about handling nontext documents in chapter 7.

 In our Indexer, we’re concerned with indexing text files. So, for each text file
we find, we create a new instance of the Document class, populate it with Fields
(described next), and add that Document to the index, effectively indexing the file.

1.5.5 Field

Each Document in an index contains one or more named fields, embodied in a
class called Field. Each field corresponds to a piece of data that is either queried
against or retrieved from the index during search.

 Lucene offers four different types of fields from which you can choose:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding the core indexing classes 21
■ Keyword—Isn’t analyzed, but is indexed and stored in the index verbatim.
This type is suitable for fields whose original value should be preserved in
its entirety, such as URLs, file system paths, dates, personal names, Social
Security numbers, telephone numbers, and so on. For example, we used
the file system path in Indexer (listing 1.1) as a Keyword field.

■ UnIndexed—Is neither analyzed nor indexed, but its value is stored in the
index as is. This type is suitable for fields that you need to display with
search results (such as a URL or database primary key), but whose values
you’ll never search directly. Since the original value of a field of this type is
stored in the index, this type isn’t suitable for storing fields with very large
values, if index size is an issue.

■ UnStored—The opposite of UnIndexed. This field type is analyzed and
indexed but isn’t stored in the index. It’s suitable for indexing a large
amount of text that doesn’t need to be retrieved in its original form, such
as bodies of web pages, or any other type of text document.

■ Text—Is analyzed, and is indexed. This implies that fields of this type can
be searched against, but be cautious about the field size. If the data
indexed is a String, it’s also stored; but if the data (as in our Indexer exam-
ple) is from a Reader, it isn’t stored. This is often a source of confusion, so
take note of this difference when using Field.Text.

All fields consist of a name and value pair. Which field type you should use
depends on how you want to use that field and its values. Strictly speaking,
Lucene has a single Field type: Fields are distinguished from each other based
on their characteristics. Some are analyzed, but others aren’t; some are indexed,
whereas others are stored verbatim; and so on.

 Table 1.2 provides a summary of different field characteristics, showing you
how fields are created, along with common usage examples.

Table 1.2 An overview of different field types, their characteristics, and their usage

Field method/type Analyzed Indexed Stored Example usage

Field.Keyword(String, String)

Field.Keyword(String, Date)

✔ ✔ Telephone and Social Security
numbers, URLs, personal names
Dates

Field.UnIndexed(String, String) ✔ Document type (PDF, HTML, and so
on), if not used as a search criteria

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

22 CHAPTER 1
Meet Lucene
Notice that all field types can be constructed with two Strings that represent the
field’s name and its value. In addition, a Keyword field can be passed both a
String and a Date object, and the Text field accepts a Reader object in addition to
the String. In all cases, the value is converted to a Reader before indexing; these
additional methods exist to provide a friendlier API.

NOTE Note the distinction between Field.Text(String, String) and Field.
Text(String, Reader). The String variant stores the field data, whereas
the Reader variant does not. To index a String, but not store it, use
Field.UnStored(String, String).

Finally, UnStored and Text fields can be used to create term vectors (an advanced
topic, covered in section 5.7). To instruct Lucene to create term vectors for a
given UnStored or Text field, you can use Field.UnStored(String, String, true),
Field.Text(String, String, true), or Field.Text(String, Reader, true).

 You’ll apply this handful of classes most often when using Lucene for index-
ing. In order to implement basic search functionality, you need to be familiar
with an equally small and simple set of Lucene search classes.

1.6 Understanding the core searching classes

The basic search interface that Lucene provides is as straightforward as the one
for indexing. Only a few classes are needed to perform the basic search operation:

■ IndexSearcher

■ Term

■ Query

■ TermQuery

■ Hits

Field.UnStored(String, String) ✔ ✔ Document titles and content

Field.Text(String, String) ✔ ✔ ✔ Document titles and content

Field.Text(String, Reader) ✔ ✔ Document titles and content

Table 1.2 An overview of different field types, their characteristics, and their usage (continued)

Field method/type Analyzed Indexed Stored Example usage
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding the core searching classes 23
The following sections provide a brief introduction to these classes. We’ll expand
on these explanations in the chapters that follow, before we dive into more
advanced topics.

1.6.1 IndexSearcher

IndexSearcher is to searching what IndexWriter is to indexing: the central link to
the index that exposes several search methods. You can think of IndexSearcher
as a class that opens an index in a read-only mode. It offers a number of search
methods, some of which are implemented in its abstract parent class Searcher;
the simplest takes a single Query object as a parameter and returns a Hits object.
A typical use of this method looks like this:

IndexSearcher is = new IndexSearcher(
 FSDirectory.getDirectory("/tmp/index", false));
Query q = new TermQuery(new Term("contents", "lucene"));
Hits hits = is.search(q);

We cover the details of IndexSearcher in chapter 3, along with more advanced
information in chapters 5 and 6.

1.6.2 Term

A Term is the basic unit for searching. Similar to the Field object, it consists of a
pair of string elements: the name of the field and the value of that field. Note
that Term objects are also involved in the indexing process. However, they’re cre-
ated by Lucene’s internals, so you typically don’t need to think about them while
indexing. During searching, you may construct Term objects and use them
together with TermQuery:

Query q = new TermQuery(new Term("contents", "lucene"));
Hits hits = is.search(q);

This code instructs Lucene to find all documents that contain the word lucene in
a field named contents. Because the TermQuery object is derived from the abstract
parent class Query, you can use the Query type on the left side of the statement.

1.6.3 Query

Lucene comes with a number of concrete Query subclasses. So far in this chapter
we’ve mentioned only the most basic Lucene Query: TermQuery. Other Query types
are BooleanQuery, PhraseQuery, PrefixQuery, PhrasePrefixQuery, RangeQuery,
FilteredQuery, and SpanQuery. All of these are covered in chapter 3. Query is the
common, abstract parent class. It contains several utility methods, the most
interesting of which is setBoost(float), described in section 3.5.9.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

24 CHAPTER 1
Meet Lucene
1.6.4 TermQuery

TermQuery is the most basic type of query supported by Lucene, and it’s one of
the primitive query types. It’s used for matching documents that contain fields
with specific values, as you’ve seen in the last few paragraphs.

1.6.5 Hits

The Hits class is a simple container of pointers to ranked search results—docu-
ments that match a given query. For performance reasons, Hits instances don’t
load from the index all documents that match a query, but only a small portion
of them at a time. Chapter 3 describes this in more detail.

1.7 Review of alternate search products

Before you select Lucene as your IR library of choice, you may want to review
other solutions in the same domain. We did some research into alternate prod-
ucts that you may want to consider and evaluate; this section summarizes our
findings. We group these products in two major categories:

■ Information Retrieval libraries
■ Indexing and searching applications

The first group is smaller; it consists of full-text indexing and searching libraries
similar to Lucene. Products in this group let you embed them in your applica-
tion, as shown earlier in figure 1.5.

 The second, larger group is made up of ready-to-use indexing and searching
software. This software is typically designed to index and search a particular type
of data, such as web pages, and is less flexible than software in the former group.
However, some of these products also expose their lower-level API, so you can
sometimes use them as IR libraries as well.

1.7.1 IR libraries

In our research for this chapter, we found two IR libraries—Egothor and
Xapian—that offer a comparable set of features and are aimed at roughly the
same audience: developers. We also found MG4J, which isn’t an IR library but is
rather a set of tools useful for building an IR library; we think developers work-
ing with IR ought to know about it. Here are our reviews of all three products.

Egothor
A full-text indexing and searching Java library, Egothor uses core algorithms
that are very similar to those used by Lucene. It has been in existence for several
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Review of alternate search products 25
years and has a small but active developer and user community. The lead devel-
oper is Czech developer Leo Galambos, a PhD student with a solid academic
background in the field of IR. He sometimes participates in Lucene’s user and
developer mailing list discussions.

 Egothor supports an extended Boolean model, which allows it to function as
both the pure Boolean model and the Vector model. You can tune which model
to use via a simple query-time parameter. This software features a number of dif-
ferent query types, supports similar search syntax, and allows multithreaded
querying, which can come in handy if you’re working on a multi-CPU computer
or searching remote indices.

 The Egothor distribution comes with several ready-to-use applications, such
as a web crawler called Capek, a file indexer with a Swing GUI, and more. It also
provides parsers for several rich-text document formats, such as PDF and
Microsoft Word documents. As such, Egothor and Capek are comparable to the
Lucene/Nutch combination, and Egother’s file indexer and document parsers
are similar to the small document parsing and indexing framework presented in
chapter 7 of this book.

 Free, open source, and released under a BSD-like license, the Egothor project
is comparable to Lucene in most aspects. If you have yet to choose a full-text
indexing and searching library, you may want to evaluate Egothor in addition to
Lucene. Egothor’s home page is at http://www.egothor.org/; as of this writing, it
features a demo of its web crawler and search functionality.

Xapian
Xapian is a Probabilistic Information Retrieval library written in C++ and
released under GPL. This project (or, rather, its predecessors) has an interesting
history: The company that developed and owned it went through more than half
a dozen acquisitions, name changes, shifts in focus, and such.

 Xapian is actively developed software. It’s currently at version 0.8.3, but it has
a long history behind it and is based on decades of experience in the IR field. Its
web site, http://www.xapian.org/, shows that it has a rich set of features, much like
Lucene. It supports a wide range of queries and has a query parser that supports
human-friendly search syntax; stemmers based on Dr. Martin Porter’s Snowball
project; parsers for a several rich-document types; bindings for Perl, Python,
PHP, and (soon) Java; remote index searching; and so on.

 In addition to providing an IR library, Xapian comes with a web site search
application called Omega, which you can download separately.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

26 CHAPTER 1
Meet Lucene
MG4J
Although MG4J (Managing Gigabytes for Java) isn’t an IR library like Lucene,
Egothor, and Xapian, we believe that every software engineer reading this book
should be aware of it because it provides low-level support for building Java IR
libraries. MG4J is named after a popular IR book, Managing Gigabytes: Compress-
ing and Indexing Documents and Images, written by Ian H. Witten, Alistair Moffat,
and Timothy C. Bell. After collecting large amounts of web data with their dis-
tributed, fault-tolerant web crawler called UbiCrawler, its authors needed soft-
ware capable of analyzing the collected data; out of that need, MG4J was born.

 The library provides optimized classes for manipulating I/O, inverted index
compression, and more. The project home page is at http://mg4j.dsi.unimi.it/; the
library is free, open source, released under LGPL, and currently at version 0.8.2.

1.7.2 Indexing and searching applications

The other group of available software, both free and commercial, is assembled
into prepackaged products. Such software usually doesn’t expose a lot of its API
and doesn’t require you to build a custom application on top of it. Most of this
software exposes a mechanism that lets you control a limited set of parameters
but not enough to use the software in a way that’s drastically different from its
assumed use. (To be fair, there are notable exceptions to this rule.)

 As such, we can’t compare this software to Lucene directly. However, some of
these products may be sufficient for your needs and let you get running quickly,
even if Lucene or some other IR library turns out to be a better choice in the
long run. Here’s a short list of several popular products in this category:

■ SWISH, SWISH-E, and SWISH++—http://homepage.mac.com/pauljlucas/
software/swish/, http://swish-e.org/

■ Glimpse and Webglimpse—http://webglimpse.net/
■ Namazu—http://www.namazu.org/
■ ht://Dig—http://www.htdig.org/
■ Harvest and Harvest-NG—http://www.sourceforge.net/projects/harvest/, http://

webharvest.sourceforge.net/ng/
■ Microsoft Index Server—http://www.microsoft.com/NTServer/techresources/

webserv/IndxServ.asp
■ Verity—http://www.verity.com/
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 27
1.7.3 Online resources

The previous sections provide only brief overviews of the related products. Sev-
eral resources will help you find other IR libraries and products beyond those
we’ve mentioned:

■ DMOZ—At the DMOZ Open Directory Project (ODP), you’ll find http://
dmoz.org/Computers/Software/Information_Retrieval/ and all its subcate-
gories very informative.

■ Google—Although Google Directory is based on the Open Directory’s data,
the two directories do differ. So, you should also visit http://directory.google.
com/Top/Computers/Software/Information_Retrieval/.

■ Searchtools—There is a web site dedicated to search tools at http://www.
searchtools.com/. This web site isn’t always up to date, but it has been around
for years and is fairly comprehensive. Software is categorized by operating
system, programming language, licenses, and so on. If you’re interested
only in search software written in Java, visit http://www.searchtools.com/
tools/tools-java.html.

We’ve provided positive reviews of some alternatives to Lucene, but we’re confi-
dent that your requisite homework will lead you to Lucene as the best choice!

1.8 Summary

In this chapter, you’ve gained some basic Lucene knowledge. You now know that
Lucene is an Information Retrieval library, not a ready-to-use product, and that
it most certainly is not a web crawler, as people new to Lucene sometimes think.
You’ve also learned a bit about how Lucene came to be and about the key people
and the organization behind it.

 In the spirit of Manning’s in Action books, we quickly got to the point by show-
ing you two standalone applications, Indexer and Searcher, which are capable of
indexing and searching text files stored in a file system. We then briefly
described each of the Lucene classes used in these two applications. Finally, we
presented our research findings for some products similar to Lucene.

 Search is everywhere, and chances are that if you’re reading this book, you’re inter-
ested in search being an integral part of your applications. Depending on your needs,
integrating Lucene may be trivial, or it may involve architectural considerations

 We’ve organized the next couple of chapters as we did this chapter. The first
thing we need to do is index some documents; we discuss this process in detail in
chapter 2.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing
This chapter covers
■ Performing basic index operations
■ Boosting Documents and Fields during indexing
■ Indexing dates, numbers, and Fields for use in

sorting search results
■ Using parameters that affect Lucene’s indexing

performance and resource consumption
■ Optimizing indexes
■ Understanding concurrency, multithreading, and

locking issues in the context of indexing
28

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding the indexing process 29
So you want to search files stored on your hard disk, or perhaps search your email,
web pages, or even data stored in a database. Lucene can help you do that. How-
ever, before you can search something, you have to index it, and that’s what you’ll
learn to do in this chapter.

 In chapter 1, you saw a simple indexing example. This chapter goes further
and teaches you about index updates, parameters you can use to tune the index-
ing process, and more advanced indexing techniques that will help you get the
most out of Lucene. Here you’ll also find information about the structure of a
Lucene index, important issues to keep in mind when accessing a Lucene index
with multiple threads and processes, and the locking mechanism that Lucene
employs to prevent concurrent index modification.

2.1 Understanding the indexing process

As you saw in the chapter 1, only a few methods of Lucene’s public API need to
be called in order to index a document. As a result, from the outside, indexing
with Lucene looks like a deceptively simple and monolithic operation. However,
behind the simple API lies an interesting and relatively complex set of operations
that we can break down into three major and functionally distinct groups, as
described in the following sections and depicted in figure 2.1.

2.1.1 Conversion to text

To index data with Lucene, you must first convert it to a stream of plain-text
tokens, the format that Lucene can digest. In chapter 1, we limited our examples
to indexing and searching .txt files, which allowed us to slurp their content and
use it to populate Field instances. However, things aren’t always that simple.

 Suppose you need to index a set of manuals in PDF format. To prepare these
manuals for indexing, you must first find a way to extract the textual information
from the PDF documents and use that extracted data to create Lucene Documents
and their Fields. If you look back at table 1.2, page 21, you’ll see that Field
methods always take String values and, in some cases, Date and Reader values.
No methods would accept a PDF Java type, even if such a type existed. You face
the same situation if you want to index Microsoft Word documents or any docu-
ment format other than plain text. Even when you’re dealing with XML or HTML
documents, which use plain-text characters, you still need to be smart about pre-
paring the data for indexing, to avoid indexing things like XML elements or
HTML tags, and index the real data in those documents.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

30 CHAPTER 2
Indexing
The details of text extraction are in chapter 7 where we build a small but com-
plete framework for indexing all document formats depicted in figure 2.1 plus a
few others. As a matter of fact, you’ll notice that figure 2.1 and figure 7.3 resem-
ble each other.

2.1.2 Analysis

Once you’ve prepared the data for indexing and created Lucene Documents pop-
ulated with Fields, you can call IndexWriter’s addDocument(Document) method
and hand your data off to Lucene to index. When you do that, Lucene first ana-
lyzes the data to make it more suitable for indexing. To do so, it splits the textual
data into chunks, or tokens, and performs a number of optional operations on
them. For instance, the tokens could be lowercased before indexing, to make
searches case-insensitive. Typically it’s also desirable to remove all frequent but

Figure 2.1
Indexing with Lucene breaks
down into three main
operations: converting data
to text, analyzing it, and
saving it to the index.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Basic index operations 31
meaningless tokens from the input, such as stop words (a, an, the, in, on, and so
on) in English text. Similarly, it’s common to analyze input tokens and reduce
them to their roots.

 This very important step is called analysis. The input to Lucene can be ana-
lyzed in so many interesting and useful ways that we cover this process in detail
in chapter 4. For now, think of this step as a type of a filter.

2.1.3 Index writing

After the input has been analyzed, it’s ready to be added to the index. Lucene
stores the input in a data structure known as an inverted index. This data structure
makes efficient use of disk space while allowing quick keyword lookups. What
makes this structure inverted is that it uses tokens extracted from input docu-
ments as lookup keys instead of treating documents as the central entities. In
other words, instead of trying to answer the question “what words are contained
in this document?” this structure is optimized for providing quick answers to
“which documents contain word X?”

 If you think about your favorite web search engine and the format of your
typical query, you’ll see that this is exactly the query that you want to be as quick
as possible. The core of all of today’s web search engines are inverted indexes.
What makes each search engine different is a set of closely guarded tricks used to
improve the structure by adding more parameters, such as Google’s well-known
PageRank factor. Lucene, too, has its own set of tricks; you can learn about some
of them in appendix B.

2.2 Basic index operations

In chapter 1, you saw how to add documents to an index. But we’ll summarize
the process here, along with descriptions of delete and update operations, to
provide you with a convenient single reference point.

2.2.1 Adding documents to an index

To summarize what you already know, let’s look at the code snippet that serves as
the base class for unit tests in this chapter. The code in listing 2.1 creates a com-
pound index imaginatively named index-dir, stored in the system’s temporary
directory: /tmp on UNIX, or C:\TEMP on computers using Windows. (Compound
indexes are covered in appendix B.) We use SimpleAnalyzer to analyze the input
text, and we then index two simple Documents, each containing all four types of
Fields: Keyword, UnIndexed, UnStored, and Text.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://wiki.apache.org/jakarta-lucene/DateField
http://wiki.apache.org/jakarta-lucene/DateField

32 CHAPTER 2
Indexing
public abstract class BaseIndexingTestCase extends TestCase {
 protected String[] keywords = {"1", "2"};
 protected String[] unindexed = {"Netherlands", "Italy"};
 protected String[] unstored = {"Amsterdam has lots of bridges",
 "Venice has lots of canals"};
 protected String[] text = {"Amsterdam", "Venice"};
 protected Directory dir;

 protected void setUp() throws IOException {
 String indexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index-dir";
 dir = FSDirectory.getDirectory(indexDir, true);
 addDocuments(dir);
 }

 protected void addDocuments(Directory dir)
 throws IOException {
 IndexWriter writer = new IndexWriter(dir, getAnalyzer(),
 true);
 writer.setUseCompoundFile(isCompound());
 for (int i = 0; i < keywords.length; i++) {
 Document doc = new Document();
 doc.add(Field.Keyword("id", keywords[i]));
 doc.add(Field.UnIndexed("country", unindexed[i]));
 doc.add(Field.UnStored("contents", unstored[i]));
 doc.add(Field.Text("city", text[i]));
 writer.addDocument(doc);
 }
 writer.optimize();
 writer.close();
 }

 protected Analyzer getAnalyzer() {
 return new SimpleAnalyzer();
 }

 protected boolean isCompound() {
 return true;
 }
}

Since this BaseIndexingTestCase class will be extended by other unit test classes
in this chapter, we’ll point out a few important details. BaseIndexingTestCase
creates the same index every time its setUp() method is called. Since setUp()is
called before a test is executed, each test runs against a freshly created index.

Listing 2.1 Preparing a new index before each test in a base test case class

Run before
every test

Default
Analyzer
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Basic index operations 33
Although the base class uses SimpleAnalyzer, the subclasses can override the get-
Analyzer() method to return a different type of Analyzer.

Heterogeneous Documents
One handy feature of Lucene is that it allows Documents with different sets of
Fields to coexist in the same index. This means you can use a single index to
hold Documents that represent different entities. For instance, you could have
Documents that represent retail products with Fields such as name and price, and
Documents that represent people with Fields such as name, age, and gender.

Appendable Fields
Suppose you have an application that generates an array of synonyms for a given
word, and you want to use Lucene to index the base word plus all its synonyms.
One way to do it would be to loop through all the synonyms and append them to
a single String, which you could then use to create a Lucene Field. Another, per-
haps more elegant way to index all the synonyms along with the base word is to
just keep adding the same Field with different values, like this:

String baseWord = "fast";
String synonyms[] = String {"quick", "rapid", "speedy"};
Document doc = new Document();
doc.add(Field.Text("word", baseWord));
for (int i = 0; i < synonyms.length; i++) {
 doc.add(Field.Text("word", synonyms[i]));
}

Internally, Lucene appends all the words together and index them in a single
Field called word, allowing you to use any of the given words when searching.

2.2.2 Removing Documents from an index
Although most applications are more concerned with getting Documents into a
Lucene index, some also need to remove them. For instance, a newspaper pub-
lisher may want to keep only the last week’s worth of news in its searchable
indexes. Other applications may want to remove all Documents that contain a cer-
tain term.

 Document deletion is done using a class that is somewhat inappropriately
called IndexReader. This class doesn’t delete Documents from the index immedi-
ately. Instead, it marks them as deleted, waiting for the actual Document deletion
until IndexReader’s close() method is called. With this in mind, let’s look at List-
ing 2.2: It inherits BaseIndexingTestCase class, which means that before each test
method is run, the base class re-creates the two-Document index, as described in
section 2.2.1.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

34 CHAPTER 2
Indexing
public class DocumentDeleteTest extends BaseIndexingTestCase {

 public void testDeleteBeforeIndexMerge() throws IOException {
 IndexReader reader = IndexReader.open(dir);
 assertEquals(2, reader.maxDoc());
 assertEquals(2, reader.numDocs());
 reader.delete(1);

 assertTrue(reader.isDeleted(1));
 assertTrue(reader.hasDeletions());
 assertEquals(2, reader.maxDoc());
 assertEquals(1, reader.numDocs());

 reader.close();

 reader = IndexReader.open(dir);

 assertEquals(2, reader.maxDoc());
 assertEquals(1, reader.numDocs());

 reader.close();
 }

 public void testDeleteAfterIndexMerge() throws IOException {
 IndexReader reader = IndexReader.open(dir);
 assertEquals(2, reader.maxDoc());
 assertEquals(2, reader.numDocs());
 reader.delete(1);
 reader.close();

 IndexWriter writer = new IndexWriter(dir, getAnalyzer(),
 false);
 writer.optimize();
 writer.close();

 reader = IndexReader.open(dir);

 assertFalse(reader.isDeleted(1));
 assertFalse(reader.hasDeletions());
 assertEquals(1, reader.maxDoc());
 assertEquals(1, reader.numDocs());

 reader.close();
 }

The code in listing 2.2 shows how to delete a Document by specifying its internal
Document number. It also shows the difference between two IndexReader methods

Listing 2.2 Removing Documents from a Lucene index by internal Document number

Next Document number is 2 b
2 Documents in index c

Delete Document with id 1 d

Document deleted e
Index contains deletions f

1 indexed Document;
next Document
number is 2

 g

Next Document
number is 2, after
IndexReader reopened

 h

i Optimizing
renumbers
Documents

bcd
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Basic index operations 35
that are often mixed up: maxDoc() and numDocs(). The former returns the next
available internal Document number, and the latter returns the number of Docu-
ments in an index. Because our index contains only two Documents, numDocs()
returns 2; and since Document numbers start from zero, maxDoc() returns 2 as well.

NOTE Each Lucene Document has a unique internal number. These number
assignments aren’t permanent, because Lucene renumbers Documents
internally when index segments are merged. Hence, you shouldn’t assume
that a given Document will always have the same Document number.

The unit test in the testDeleteBeforeIndexMerge() method also demonstrates
the use of IndexReader’s hasDeletions() method to check if an index contains
any Documents marked for deletion and the isDeleted(int) method to check the
status of a Document specified by its Document number.
As you can see, numDocs() is aware of Document deletion immediately, whereas
maxDoc() isn’t.
Furthermore, in the method testDeleteAfterIndexMerge() we close the Index-
Reader and force Lucene to merge index segments by optimizing the index. When
we subsequently open the index with IndexReader, the maxDoc() method returns 1
rather than 2, because after a delete and merge, Lucene renumbered the remain-
ing Documents. Only one Document remains in the index, so the next available
Document number is 1.

In addition to deleting a single Document by specifying its Document number, as
we’ve done, you can delete several Documents by using IndexReader’s delete(Term)
method. Using this deletion method lets you delete all Documents that contain the
specified term. For instance, to remove a Document that contains the word Amster-
dam in a city field, you can use IndexReader like so:

 IndexReader reader = IndexReader.open(dir);
 reader.delete(new Term("city", "Amsterdam"));
 reader.close();

You should be extra careful when using this approach, because specifying a term
present in all indexed Documents will wipe out a whole index. The usage of this
method is similar to the Document number-based deletion method; you can see it
in section 2.2.4.

 You may wonder why Lucene performs Document deletion from IndexReader
and not IndexWriter instances. That question is asked in the Lucene community
every few months, probably due to imperfect and perhaps misleading class names.
Lucene users often think that IndexWriter is the only class that can modify an

 fe

 hg

 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

36 CHAPTER 2
Indexing
index and that IndexReader accesses an index in a read-only fashion. In reality,
IndexWriter touches only the list of index segments and a small subset of index
files when segments are merged. On the other hand, IndexReader knows how to
parse all index files and make sense out of them. When a Document is deleted,
IndexReader first needs to locate the segment containing the specified Document
before it can mark it as deleted. There are currently no plans to change either the
names or behavior of these two Lucene classes.

2.2.3 Undeleting Documents

Because Document deletion is deferred until the closing of the IndexReader
instance, Lucene allows an application to change its mind and undelete Documents
that have been marked as deleted. A call to IndexReader’s undeleteAll() method
undeletes all deleted Documents by removing all .del files from the index directory.
Subsequently closing the IndexReader instance therefore leaves all Documents in
the index. Documents can be undeleted only if the call to undeleteAll() was done
using the same instance of IndexReader that was used to delete the Documents in
the first place.

2.2.4 Updating Documents in an index

“How do I update a document in an index?” is a frequently asked question on
the Lucene user mailing list. Lucene doesn’t offer an update(Document) method;
instead, a Document must first be deleted from an index and then re-added to it,
as shown in listing 2.3.

public class DocumentUpdateTest extends BaseIndexingTestCase {

 public void testUpdate() throws IOException {

 assertEquals(1, getHitCount("city", "Amsterdam"));

 IndexReader reader = IndexReader.open(dir);
 reader.delete(new Term("city", "Amsterdam"));
 reader.close();

 assertEquals(0, getHitCount("city", "Amsterdam"));

 IndexWriter writer = new IndexWriter(dir, getAnalyzer(),
 false);
 Document doc = new Document();
 doc.add(Field.Keyword("id", "1"));

Listing 2.3 Updating indexed Documents by first deleting them and then
re-adding them

Delete Documents
with “Amsterdam”
in city field

Verify Document
removal

Re-add Document
with new city
name: “Haag”
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Basic index operations 37
 doc.add(Field.UnIndexed("country", "Netherlands"));
 doc.add(Field.UnStored("contents",
 "Amsterdam has lots of bridges"));
 doc.add(Field.Text("city", "Haag"));
 writer.addDocument(doc);
 writer.optimize();
 writer.close();

 assertEquals(1, getHitCount("city", "Haag"));
 }

 protected Analyzer getAnalyzer() {
 return new WhitespaceAnalyzer();
 }

 private int getHitCount(String fieldName, String searchString)
 throws IOException {
 IndexSearcher searcher = new IndexSearcher(dir);
 Term t = new Term(fieldName, searchString);
 Query query = new TermQuery(t);
 Hits hits = searcher.search(query);
 int hitCount = hits.length();
 searcher.close();
 return hitCount;
 }
}

We first remove all Documents whose city Field contains the term Amsterdam; then
we add a new Document whose Fields are the same as those of the removed Document,
except for a new value in the city Field. Instead of the Amsterdam, the new Docu-
ment has Haag in its city Field. We have effectively updated one of the Documents
in the index.

Updating by batching deletions
Our example deletes and re-adds a single Document. If you need to delete and
add multiple Documents, it’s best to do so in batches. Follow these steps:

1 Open IndexReader.

2 Delete all the Documents you need to delete.

3 Close IndexReader.

4 Open IndexWriter.

5 Add all the Documents you need to add.

6 Close IndexWriter.

Re-add Document
with new city
name: “Haag”

Verify Document
update
Licensed to Jason Ruesch <krhonos713@hotmail.com>

38 CHAPTER 2
Indexing
This is important to remember: Batching Document deletion and indexing will
always be faster than interleaving delete and add operations.

 With add, update, and delete operations under your belt, let’s discuss how to
fine-tune the performance of indexing and make the best use of available hard-
ware resources.

TIP When deleting and adding Documents, do it in batches. This will always
be faster than interleaving delete and add operations.

2.3 Boosting Documents and Fields

Not all Documents and Fields are created equal—or at least you can make sure
that’s the case by selectively boosting Documents or Fields. Imagine you have to
write an application that indexes and searches corporate email. Perhaps the
requirement is to give company employees’ emails more importance than other
email messages. How would you go about doing this?

 Document boosting is a feature that makes such a requirement simple to imple-
ment. By default, all Documents have no boost—or, rather, they all have the same
boost factor of 1.0. By changing a Document’s boost factor, you can instruct Lucene
to consider it more or less important with respect to other Documents in the index.
The API for doing this consists of a single method, setBoost(float), which can be
used as follows:

public static final String COMPANY_DOMAIN = "example.com";
public static final String BAD_DOMAIN = "yucky-domain.com";

Document doc = new Document();
String senderEmail = getSenderEmail();
String senderName = getSenderName();
String subject = getSubject();
String body = getBody();
doc.add(Field.Keyword("senderEmail”, senderEmail));
doc.add(Field.Text("senderName", senderName));
doc.add(Field.Text("subject", subject));
doc.add(Field.UnStored("body", body));
if (getSenderDomain().endsWithIgnoreCase(COMPANY_DOMAIN)) {
 doc.setBoost(1.5);
}
else if (getSenderDomain().endsWithIgnoreCase(BAD_DOMAIN)) {
 doc.setBoost(0.1);
}
writer.addDocument(doc);

Employee boost factor: 1.5 b

Bad domain boost factor: 0.1 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing dates 39
In this example, we check the domain name of the email message sender to
determine whether the sender is a company employee.

When we index messages sent by the company’s employees, we set their boost
factor to 1.5, which is greater than the default factor of 1.0.
When we encounter messages from a sender associated with a fictional bad
domain, we label them as nearly insignificant by lowering their boost factor to 0.1.

Just as you can boost Documents, you can also boost individual Fields. When you
boost a Document, Lucene internally uses the same boost factor to boost each of its
Fields. Imagine that another requirement for the email-indexing application is
to consider the subject Field more important than the Field with a sender’s
name. In other words, search matches made in the subject Field should be more
valuable than equivalent matches in the senderName Field in our earlier example.
To achieve this behavior, we use the setBoost(float) method of the Field class:

Field senderNameField = Field.Text("senderName", senderName);
Field subjectField = Field.Text("subject", subject);
subjectField.setBoost(1.2);

In this example, we arbitrarily picked a boost factor of 1.2, just as we arbitrarily
picked Document boost factors of 1.5 and 0.1 earlier. The boost factor values you
should use depend on what you’re trying to achieve; you may need to do a bit of
experimentation and tuning to achieve the desired effect.

 It’s worth noting that shorter Fields have an implicit boost associated with
them, due to the way Lucene’s scoring algorithm works. Boosting is, in general,
an advanced feature that many applications can work very well without.

 Document and Field boosting comes into play at search time, as you’ll learn in
section 3.5.9. Lucene’s search results are ranked according to how closely each
Document matches the query, and each matching Document is assigned a score.
Lucene’s scoring formula consists of a number of factors, and the boost factor is
one of them.

2.4 Indexing dates

Email messages include sent and received dates, files have several timestamps
associated with them, and HTTP responses have a Last-Modified header that
includes the date of the requested page’s last modification. Chances are, like
many other Lucene users, you’ll need to index dates. Lucene comes equipped
with a Field.Keyword(String, Date) method, as well as a DateField class, which
make date indexing easy. For example, to index today’s date, you can do this:

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

40 CHAPTER 2
Indexing
Document doc = new Document();
doc.add(Field.Keyword("indexDate", new Date()));

Internally, Lucene uses the DateField class to convert the given date to a String
suitable for indexing. Handling dates this way is simple, but you must be careful
when using this method: Dates converted to indexable Strings by DateField
include all the date parts, down to the millisecond. As you’ll read in section 6.5,
this can cause performance problems for certain types of queries. In practice,
you rarely need dates that are precise down to the millisecond, at least to query
on. Generally, you can round dates to an hour or even to a day.

 Since all Field values are eventually turned into text, you may very well index
dates as Strings. For instance, if you can round the date to a day, index dates as
YYYYMMDD Strings using the Field.Keyword(String, String) method. Another
good reason for taking this approach is that you’ll be able to index dates before
the Unix Epoch (Jan 1, 1970), which DateField can’t handle. Although several
workarounds and patches for solving this limitation have been contributed over
the past few years, none of them were sufficiently elegant. As a consequence,
they can still be found in Lucene’s patch queue, but they aren’t included in
Lucene. Judging by how often Lucene users bring up this limitation, not being
able to index dates prior to 1970 usually isn’t a problem.

NOTE If you only need the date for searching, and not the timestamp, index as
Field.Keyword("date", "YYYYMMDD"). If the full timestamp needs to
be preserved for retrieval, index a second Field as Field.Keyword
("timestamp", <java.util.Date>).

If you choose to format dates or times in some other manner, take great care that
the String representation is lexicographically orderable; doing so allows for sen-
sible date-range queries. A benefit of indexing dates in YYYYMMDD format is the
ability to query by year only, by year and month, or by exact year, month, and
day. To query by year only, use a PrefixQuery for YYYY, for example. We discuss
PrefixQuery further in section 3.4.3.

2.5 Indexing numbers

There are two common scenarios in which number indexing is important. In one
scenario, numbers are embedded in the text to be indexed, and you want to
make sure those numbers are indexed so that you can use them later in searches.
For instance, your documents may contain sentences like “Mt. Everest is 8848
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing Fields used for sorting 41
meters tall”: You want to be able to search for the number 8848 just like you can
search for the word Everest and retrieve the document that contains the sentence.

 In the other scenario, you have Fields that contain only numeric values, and
you want to be able to index them and use them for searching. Moreover, you
may want to perform range queries using such Fields. For example, if you’re
indexing email messages, one of the possible index Fields could hold the mes-
sage size, and you may want to be able to find all messages of a given size; or, you
may want to use range queries to find all messages whose size is in a certain
range. You may also have to sort results by size.

 Lucene can index numeric values by treating them as strings internally. If you
need to index numbers that appear in free-form text, the first thing you should
do is pick the Analyzer that doesn’t discard numbers. As we discuss in section 4.3,
WhitespaceAnalyzer and StandardAnalyzer are two possible candidates. If you
feed them a sentence such as “Mt. Everest is 8848 meters tall,” they extract 8848
as a token and pass it on for indexing, allowing you to later search for 8848. On
the other hand, SimpleAnalyzer and StopAnalyzer throw numbers out of the
token stream, which means the search for 8848 won’t match any documents.

 Fields whose sole value is a number don’t need to be analyzed, so they should
be indexed as Field.Keyword. However, before just adding their raw values to the
index, you need to manipulate them a bit, in order for range queries to work as
expected. When performing range queries, Lucene uses lexicographical values
of Fields for ordering. Consider three numeric Fields whose values are 7, 71,
and 20. Although their natural order is 7, 20, 71, their lexicographical order is
20, 7, 71. A simple and common trick for solving this inconsistency is to prepad
numeric Fields with zeros, like this: 007, 020, 071. Notice that the natural and
the lexicographical order of the numbers is now consistent. For more details
about searching numeric Fields, see section 6.3.3.

NOTE When you index Fields with numeric values, pad them if you want to
use them for range queries

2.6 Indexing Fields used for sorting

When returning search hits, Lucene orders them by their score by default. Some-
times, however, you need to order results using some other criteria. For instance,
if you’re searching email messages, you may want to order results by sent or
received date, or perhaps by message size. If you want to be able to sort results by
a Field value, you must add it as a Field that is indexed but not tokenized (for
Licensed to Jason Ruesch <krhonos713@hotmail.com>

42 CHAPTER 2
Indexing
example, Field.Keyword). Fields used for sorting must be convertible to Integers,
Floats, or Strings:

Field.Keyword("size", "4096");
Field.Keyword("price", "10.99");
Field.Keyword("author", "Arthur C. Clark");

Although we’ve indexed numeric values as Strings, you can specify the correct
Field type (such as Integer or Long) at sort time, as described in section 5.1.7.

NOTE Fields used for sorting have to be indexed and must not be tokenized.

2.7 Controlling the indexing process

Indexing small and midsized document collections works well with the default
Lucene setup. However, if your application deals with very large indexes, you’ll
probably want some control over Lucene’s indexing process to ensure optimal
indexing performance. For instance, you may be indexing several million docu-
ments and want to speed up the process so it takes minutes instead of hours.
Your computer may have spare RAM, but you need to know how to let Lucene
make more use of it. Lucene has several parameters that allow you to control its
performance and resource use during indexing.

2.7.1 Tuning indexing performance

In a typical indexing application, the bottleneck is the process of writing index
files onto a disk. If you were to profile an indexing application, you’d see that
most of the time is spent in code sections that manipulate index files. Therefore,
you need to instruct Lucene to be smart about indexing new Documents and mod-
ifying existing index files.

 As shown in figure 2.2, when new Documents are added to a Lucene index, they’re
initially buffered in memory instead of being immediately written to the disk.

 This buffering is done for performance reasons; and luckily, the IndexWriter
class exposes several instance variables that allow you to adjust the size of this buffer
and the frequency of disk writes. These variables are summarized in table 2.1.

Table 2.1 Parameters for indexing performance tuning

IndexWriter
variable

System property
Default
value

Description

mergeFactor org.apache.lucene.mergeFactor 10 Controls segment merge
frequency and size

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 43
IndexWriter’s mergeFactor lets you control how many Documents to store in mem-
ory before writing them to the disk, as well as how often to merge multiple index
segments together. (Index segments are covered in appendix B.) With the default
value of 10, Lucene stores 10 Documents in memory before writing them to a sin-
gle segment on the disk. The mergeFactor value of 10 also means that once the
number of segments on the disk has reached the power of 10, Lucene merges
these segments into a single segment.

 For instance, if you set mergeFactor to 10, a new segment is created on the disk
for every 10 Documents added to the index. When the tenth segment of size 10 is
added, all 10 are merged into a single segment of size 100. When 10 such seg-
ments of size 100 have been added, they’re merged into a single segment contain-
ing 1,000 Documents, and so on. Therefore, at any time, there are no more than 9
segments in the index, and the size of each merged segment is the power of 10.

 There is a small exception to this rule that has to do with maxMergeDocs,
another IndexWriter instance variable: While merging segments, Lucene ensures

maxMergeDocs org.apache.lucene.maxMergeDocs Integer.MAX_VALUE Limits the number of
documents per segement

minMergeDocs org.apache.lucene.minMergeDocs 10 Controls the amount of
RAM used when indexing

Table 2.1 Parameters for indexing performance tuning (continued)

IndexWriter
variable

System property
Default
value

Description

Figure 2.2
An in-memory
Document buffer helps
improve Lucene’s
indexing performance.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

44 CHAPTER 2
Indexing
that no segment with more than maxMergeDocs Documents is created. For instance,
suppose you set maxMergeDocs to 1,000. When you add the ten-thousandth Docu-
ment, instead of merging multiple segments into a single segment of size 10,000,
Lucene creates the tenth segment of size 1,000 and keeps adding new segments
of size 1,000 for every 1,000 Documents added.

 Now that you’ve seen how mergeFactor and maxMergeDocs work, you can
deduce that using a higher value for mergeFactor causes Lucene to use more RAM
but let it write data to disk less frequently, consequently speeding up the indexing
process. A lower mergeFactor uses less memory and causes the index to be
updated more frequently, which makes it more up to date but also slows down the
indexing process. Similarly, a higher maxMergeDocs is better suited for batch
indexing, and a lower maxMergeDocs is better for more interactive indexing. Be
aware that because a higher mergeFactor means less frequent merges, it results in
an index with more index files. Although this doesn’t affect indexing perfor-
mance, it may slow searching, because Lucene will need to open, read, and pro-
cess more index files.

 minMergeDocs is another IndexWriter instance variable that affects indexing
performance. Its value controls how many Documents have to be buffered before
they’re merged to a segment. The minMergeDocs parameter lets you trade in
more of your RAM for faster indexing. Unlike mergeFactor, this parameter
doesn’t affect the size of index segments on disk.

Example: IndexTuningDemo
To get a better feel for how different values of mergeFactor, maxMergeDocs and
minMergeDocs affect indexing speed, look at the IndexTuningDemo class in listing 2.4.
This class takes four command-line arguments: the total number of Documents to
add to the index, the value to use for mergeFactor, the value to use for maxMerge-
Docs, and the value for minMergeDocs. All four arguments must be specified, must
be integers, and must be specified in this order. In order to keep the code short
and clean, there are no checks for improper usage.

public class IndexTuningDemo {

 public static void main(String[] args) throws Exception {
 int docsInIndex = Integer.parseInt(args[0]);

 // create an index called 'index-dir' in a temp directory
 Directory dir = FSDirectory.getDirectory(

Listing 2.4 Demonstration of using mergeFactor, maxMergeDocs, and
minMergeDocs
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 45
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index-dir", true);
 Analyzer analyzer = new SimpleAnalyzer ();
 IndexWriter writer = new IndexWriter(dir, analyzer, true);

 // set variables that affect speed of indexing
 writer.mergeFactor = Integer.parseInt(args[1]);
 writer.maxMergeDocs = Integer.parseInt(args[2]);
 writer.minMergeDocs = Integer.parseInt(args[3]);
 writer.infoStream = System.out;

 System.out.println("Merge factor: " + writer.mergeFactor);
 System.out.println("Max merge docs: " + writer.maxMergeDocs);
 System.out.println("Min merge docs: " + writer.minMergeDocs);

 long start = System.currentTimeMillis();
 for (int i = 0; i < docsInIndex; i++) {
 Document doc = new Document();
 doc.add(Field.Text("fieldname", "Bibamus"));
 writer.addDocument(doc);
 }
 writer.close();
 long stop = System.currentTimeMillis();
 System.out.println("Time: " + (stop - start) + " ms");
 }
}

The first argument represents the number of Documents to add to the index; the
second argument is the value to use for the mergeFactor, followed by maxMergeDocs
value; and the last argument is the value to use for the minMergeDocs parameter:

% java lia.indexing.IndexTuningDemo 100000 10 9999999 10

Merge factor: 10
Max merge docs: 9999999
Min merge docs: 10
Time: 74136 ms

% java lia.indexing.IndexTuningDemo 100000 100 9999999 10
Merge factor: 100
Max merge docs: 9999999
Min merge docs: 10
Time: 68307 ms

Both invocations create an index with 100,000 Documents, but the first one takes
longer to complete (74,136 ms versus 68,307 ms). That’s because the first invoca-
tion uses the default mergeFactor of 10, which causes Lucene to write Documents to

Adjust settings that
affect indexing
performance

Tell IndexWriter to print
info to System.out

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

46 CHAPTER 2
Indexing
the disk more often than the second invocation (mergeFactor of 100). Let’s look at
a few more runs with different parameter values:

% java lia.indexing.IndexTuningDemo 100000 10 9999999 100

Merge factor: 10
Max merge docs: 9999999
Min merge docs: 100
Time: 54050 ms

% java lia.indexing.IndexTuningDemo 100000 100 9999999 100

Merge factor: 100
Max merge docs: 9999999
Min merge docs: 100
Time: 47831 ms

% java lia.indexing.IndexTuningDemo 100000 100 9999999 1000

Merge factor: 100
Max merge docs: 9999999
Min merge docs: 1000
Time: 44235 ms

% java lia.indexing.IndexTuningDemo 100000 1000 9999999 1000

Merge factor: 1000
Max merge docs: 9999999
Min merge docs: 1000
Time: 44223 ms

% java -server -Xms128m -Xmx256m
➾ lia.indexing.IndexTuningDemo 100000 1000 9999999 1000

Merge factor: 1000
Max merge docs: 9999999
Min merge docs: 1000
Time: 36335 ms

% java lia.indexing.IndexTuningDemo 100000 1000 9999999 10000
Exception in thread "main" java.lang.OutOfMemoryError

Indexing speed improves as we increase mergeFactor and minMergeDocs, and
when we give the JVM a larger start and maximum heap. Note how using 10,000
for minMergeDocs resulted in an OutOfMemoryError; this can also happen if you
choose too large a mergeFactor value.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 47
NOTE Increasing mergeFactor and minMergeDocs improves indexing speed,
but only to a point. Higher values also use more RAM and may cause
your indexing process to run out of memory, if they’re set too high.

Keep in mind that the IndexTuningDemo is, as its name implies, only a demonstra-
tion of the use and effect of mergeFactor, maxMergeDocs, and minMergeDocs. In
this class, we add Documents with a single Field consisting of a single word. Con-
sequently, we can use a very high mergeFactor. In practice, applications that use
Lucene tend to work with indexes whose documents have several Fields and
whose Fields contain larger chunks of text. Those applications won’t be able to
use mergeFactor and minMergeDocs values as high as those we used here unless
they run on computers with very large amounts of RAM—which is the factor that
limits mergeFactor and minMergeDocs for a given index. If you choose to run
IndexTuningDemo, keep in mind the effect that the operating system’s and file sys-
tem’s cache can have on its performance. Be sure to warm up the caches and run
each configuration several times, ideally on the otherwise idle computer. Fur-
thermore, create a large enough index to minimize the effect of these caches.
Finally, it’s worth repeating that using a higher mergeFactor will affect search
performance—increase its value with caution.

NOTE Don’t forget that giving your JVM a larger memory heap may improve
indexing performance. This is often done with a combination of –Xms
and –Xmx command-line arguments to the Java interpreter. Giving the
JVM a larger heap also lets you increase the values of the mergeFactor
and minMergeDocs parameters. Making sure that the HotSpot, JIT, or
similar JVM option is enabled also has positive effects.

Changing the maximum open files limit under UNIX
Note that although these three variables can help improve indexing perfor-
mance, they also affect the number of file descriptors that Lucene uses and can
therefore cause the “Too many open files” exception when used with multifile
indexes. (Multifile indexes and compound indexes are covered in appendix B.) If
you get this error, you should first check the contents of your index directory. If it
contains multiple segments, you should optimize the index using IndexWriter’s
optimize() method, as described in section 2.8; optimization helps indexes that
contain more than one segment by merging them into a single index segment. If
optimizing the index doesn’t solve the problem, or if your index already has only
a single segment, you can try increasing the maximum number of open files
allowed on your computer. This is usually done at the operating-system level and
Licensed to Jason Ruesch <krhonos713@hotmail.com>

48 CHAPTER 2
Indexing
varies from OS to OS. If you’re using Lucene on a computer that uses a flavor of
the UNIX OS, you can see the maximum number of open files allowed from the
command line.

 Under bash, you can see the current settings with the built-in ulimit command:

% ulimit -n

Under tcsh, the equivalent is

% limit descriptors

To change the value under bash, use this command:

% ulimit -n <max number of open files here>

Under tcsh, use the following:

% limit descriptors <max number of open files here>

To estimate a setting for the maximum number of open files used while index-
ing, keep in mind that the maximum number of files Lucene will open at any
one time during indexing is

(1 + mergeFactor) * FilesPerSegment

For instance, with a default mergeFactor of 10, while creating an index with
1 million Documents, Lucene will require at the most 88 open files on an unopti-
mized multifile index with a single indexed field. We get to this number by using
the following formula:

11 segments/index * (7 files/segment + 1 file for indexed field)

If even this doesn’t eliminate the problem of too many simultaneously open files,
and you’re using a multifile index structure, you should consider converting your
index to the compound structure. As described in appendix B, doing so will fur-
ther reduce the number of files Lucene needs to open when accessing your index.

NOTE If your computer is running out of available file descriptors, and your
index isn’t optimized, consider optimizing it.

2.7.2 In-memory indexing: RAMDirectory

In the previous section, we mentioned that Lucene does internal buffering by
holding newly added documents in memory prior to writing them to the disk.
This is done automatically and transparently when you use FSDirectory, a file-
based Directory implementation. But perhaps you want to have more control
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 49
over indexing, its memory use, and the frequency of flushing the in-memory
buffer to disk. You can use RAMDirectory as a form of in-memory buffer.

RAMDirectory versus FSDirectory
Everything that FSDirectory does on disk, RAMDirectory performs in memory,
and is thus much faster. The code in listing 2.5 creates two indexes: one backed
by an FSDirectory and the other by RAMDirectory. Except for this difference,
they’re identical—each contains 1,000 Documents with identical content.

public class FSversusRAMDirectoryTest extends TestCase {

 private Directory fsDir;
 private Directory ramDir;
 private Collection docs = loadDocuments(3000, 5);

 protected void setUp() throws Exception {
 String fsIndexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "fs-index";

 ramDir = new RAMDirectory();
 fsDir = FSDirectory.getDirectory(fsIndexDir, true);
 }

 public void testTiming() throws IOException {
 long ramTiming = timeIndexWriter(ramDir);
 long fsTiming = timeIndexWriter(fsDir);

 assertTrue(fsTiming > ramTiming);

 System.out.println("RAMDirectory Time: " + (ramTiming) + " ms");
 System.out.println("FSDirectory Time : " + (fsTiming) + " ms");
 }

 private long timeIndexWriter(Directory dir) throws IOException {
 long start = System.currentTimeMillis();
 addDocuments(dir);
 long stop = System.currentTimeMillis();
 return (stop - start);
 }

 private void addDocuments(Directory dir) throws IOException {
 IndexWriter writer = new IndexWriter(dir, new SimpleAnalyzer(),
 true);

 /**

Listing 2.5 RAMDirectory always out-performs FSDirectory

Create Directory whose
content is held in RAM

Create Directory
whose content is
stored on disk

RAMDirectory is
faster than
FSDirectory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

50 CHAPTER 2
Indexing
 // change to adjust performance of indexing with FSDirectory
 writer.mergeFactor = writer.mergeFactor;
 writer.maxMergeDocs = writer.maxMergeDocs;
 writer.minMergeDocs = writer.minMergeDocs;
 */

 for (Iterator iter = docs.iterator(); iter.hasNext();) {
 Document doc = new Document();
 String word = (String) iter.next();
 doc.add(Field.Keyword("keyword", word));
 doc.add(Field.UnIndexed("unindexed", word));
 doc.add(Field.UnStored("unstored", word));
 doc.add(Field.Text("text", word));
 writer.addDocument(doc);
 }
 writer.optimize();
 writer.close();
 }

 private Collection loadDocuments(int numDocs, int wordsPerDoc) {
 Collection docs = new ArrayList(numDocs);
 for (int i = 0; i < numDocs; i++) {
 StringBuffer doc = new StringBuffer(wordsPerDoc);
 for (int j = 0; j < wordsPerDoc; j++) {
 doc.append("Bibamus ");
 }
 docs.add(doc.toString());
 }
 return docs;
 }
}

Although there are better ways to construct benchmarks (see section 6.5 for an
example of how you can use JUnitPerf to measure performance of index search-
ing), this benchmark is sufficient for illustrating the performance advantage that
RAMDirectory has over FSDirectory. If you run the test from listing 2.5 and grad-
ually increase the value of mergeFactor or minMergeDocs, you’ll notice that the
FSDirectory-based indexing starts to approach the speed of the RAMDirectory-
based one. However, you’ll also notice that no matter what combination of
parameters you use, the FSDirectory-based index never outperforms its RAM-
based cousin.

 Even though you can use indexing parameters to instruct Lucene to merge
segments on disk less frequently, FSDirectory-based indexing has to write them
to the disk eventually; that is the source of the performance difference between
the two Directory implementations. RAMDirectory simply never writes anything

Parameters that
affect performance
of FSDirectory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 51
on disk. Of course, this means that once your indexing application exits, your
RAMDirectory-based index is gone.

Batch indexing by using RAMDirectory as a buffer
Suppose you want to improve indexing performance with Lucene, and manipu-
lating IndexWriter’s mergeFactor, maxMergeDocs, and minMergeDocs proves insuf-
ficient. You have the option of taking control in your own hands by using
RAMDirectory to buffer writing to an FSDirectory-based index yourself. Here’s a
simple recipe for doing that:

1 Create an FSDirectory-based index.

2 Create a RAMDirectory-based index.

3 Add Documents to the RAMDirectory-based index.

4 Every so often, flush everything buffered in RAMDirectory into FSDirectory.

5 Go to step 3. (Who says GOTO is dead?)

We can translate this recipe to the following mixture of pseudocode and the
actual Lucene API use:

FSDirectory fsDir = FSDirectory.getDirectory("/tmp/index",
 true);
RAMDirectory ramDir = new RAMDirectory();

IndexWriter fsWriter = IndexWriter(fsDir,
 new SimpleAnalyzer(), true);
IndexWriter ramWriter = new IndexWriter(ramDir,
 new SimpleAnalyzer(), true);

while (there are documents to index) {
 ... create Document ...
 ramWriter.addDocument(doc);

 if (condition for flushing memory to disk has been met) {
 fsWriter.addIndexes(Directory[] {ramDir});
 ramWriter.close();
 ramWriter = new IndexWriter(ramDir, new SimpleAnalyzer(),
 true);
 }
}

This approach gives you the freedom to flush Documents buffered in RAM onto
disk whenever you choose. For instance, you could use a counter that triggers
flushing after every N Documents added to a RAMDirectory-based index. Similarly,
you could have a timer that periodically forces the flush regardless of the number

Merge in-memory RAMDirectory
with on-disk FSDirectory

Create new in-memory
RAMDirectory buffer
Licensed to Jason Ruesch <krhonos713@hotmail.com>

52 CHAPTER 2
Indexing
of Documents added. A more sophisticated approach would involve keeping track
of RAMDirectory’s memory consumption, in order to prevent RAMDirectory from
growing too large.

 Whichever logic you choose, eventually you’ll use IndexWriter’s addIndexes
(Directory[]) method to merge your RAMDirectory-based index with the one on
disk. This method takes an array of Directorys of any type and merges them all
into a single Directory whose location is specified in the IndexWriter constructor.

Parallelizing indexing by working with multiple indexes
The idea of using RAMDirectory as a buffer can be taken even further, as shown in
figure 2.3. You could create a multithreaded indexing application that uses mul-
tiple RAMDirectory-based indexes in parallel, one in each thread, and merges
them into a single index on the disk using IndexWriter’s addIndexes(Direc-
tory[]) method.

 Again, when and how you choose to synchronize your threads and merge
their RAMDirectorys to a single index on disk is up to you. Of course, if you have

Figure 2.3 A multithreaded application that uses multiple RAMDirectory
instances for parallel indexing.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 53
multiple hard disks, you could also parallelize the disk-based indexes, since the
two disks can operate independently.

 And what if you have multiple computers connected with a fast network, such
as Fiber Channel? That, too, can be exploited by using a set of computers as an
indexing cluster. A sophisticated indexing application could create in-memory
or file system-based indexes on multiple computers in parallel and periodically
send their index to a centralized server, where all indexes are merged into one
large index.

 The architecture in figure 2.4 has two obvious flaws: the centralized index
represents a single point of failure and is bound to become a bottleneck when
the number of indexing nodes increases. Regardless, this should give you some
ideas. When you learn how to use Lucene to perform searches over multiple
indexes in parallel and even do it remotely (see section 5.6), you’ll see that
Lucene lets you create very large distributed indexing and searching clusters.

 By now, you can clearly see a few patterns. RAM is faster than disk: If you
need to squeeze more out of Lucene, use RAMDirectory to do most of your index-
ing in faster RAM. Minimize index merges. If you have sufficient resources, such
as multiple CPUs, disks, or even computers, parallelize indexing and use the
addIndexes(Directory[]) method to write to a single index, which you should
eventually build and search. To make full use of this approach, you need to
ensure that the thread or computer that performs the indexing on the disk is
never idle, because idleness translates to wasted time.

Figure 2.4
A cluster of indexer nodes
that send their small
indexes to a large
centralized indexing server.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

54 CHAPTER 2
Indexing
In section 3.2.3, we discuss the move in the opposite direction: how to get an
existing index stored on the file system into RAM. This topic is reserved for the
chapter on searching because searching is the most appropriate reason to bring
a file system index into RAM.

2.7.3 Limiting Field sizes: maxFieldLength

Some applications index documents whose sizes aren’t known in advance. To con-
trol the amount of RAM and hard-disk memory used, they need to limit the
amount of input they index. Other applications deal with documents of known
size but want to index only a portion of each document. For example, you may
want to index only the first 200 words of each document. Lucene’s IndexWriter
exposes maxFieldLength, an instance variable that lets you programmatically
truncate very large document Fields. With a default value of 10,000, Lucene
indexes only the first 10,000 terms in each Document Field. This effectively means
that only the first 10,000 terms are relevant for searches, and any text beyond the
ten-thousandth term isn’t indexed.

 To limit Field sizes to 1,000 terms, an application sets maxFieldLength to
1,000; to virtually eliminate the limit, an application should set maxFieldLength
to Integer.MAX_VALUE. The value of maxFieldLength can be changed at any time
during indexing, and the change takes effect for all subsequently added docu-
ments. The change isn’t retroactive, so any fields already truncated due to a lower
maxFieldLength will remain truncated. Listing 2.6 shows a concrete example.

public class FieldLengthTest extends TestCase {

 private Directory dir;
 private String[] keywords = {"1", "2"};
 private String[] unindexed = {"Netherlands", "Italy"};
 private String[] unstored = {"Amsterdam has lots of bridges",
 "Venice has lots of canals"};
 private String[] text = {"Amsterdam", "Venice"};

 protected void setUp() throws IOException {
 String indexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index-dir";
 dir = FSDirectory.getDirectory(indexDir, true);
 }

 public void testFieldSize() throws IOException {
 addDocuments(dir, 10);

Listing 2.6 Controlling field size with maxFieldLength

Index first 10 terms of each Field b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Controlling the indexing process 55
 assertEquals(1, getHitCount("contents", "bridges"));

 addDocuments(dir, 1);
 assertEquals(0, getHitCount("contents", "bridges"));
 }

 private int getHitCount(String fieldName, String searchString)
 throws IOException {
 IndexSearcher searcher = new IndexSearcher(dir);
 Term t = new Term(fieldName, searchString);
 Query query = new TermQuery(t);
 Hits hits = searcher.search(query);
 int hitCount = hits.length();
 searcher.close();
 return hitCount;
 }

 private void addDocuments(Directory dir, int maxFieldLength)
 throws IOException {
 IndexWriter writer = new IndexWriter(dir, new SimpleAnalyzer(),
 true);
 writer.maxFieldLength = maxFieldLength;
 for (int i = 0; i < keywords.length; i++) {
 Document doc = new Document();
 doc.add(Field.Keyword("id", keywords[i]));
 doc.add(Field.UnIndexed("country", unindexed[i]));
 doc.add(Field.UnStored("contents", unstored[i]));
 doc.add(Field.Text("city", text[i]));
 writer.addDocument(doc);
 }
 writer.optimize();
 writer.close();
 }
}

From this listing, you see how we can limit the number of Document terms we
index:
First we instruct IndexWriter to index the first 10 terms.
After the first Document is added, we’re able to find a match for the term bridges
because it’s the fifth term in the document containing the text “Amsterdam has
lots of bridges”.
We reindex this Document, instructing IndexWriter to index only the first term.
Now we’re unable to find a Document that contained the term bridges because
Lucene indexed only the first term, Amsterdam. The rest of the terms, including
bridges, were ignored.

Term bridges
was indexed

 c

Index first term of each Field d
Term bridges
wasn’t indexed

 e

Set number of
terms to index

 f

 fb
 c

 d
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

56 CHAPTER 2
Indexing
2.8 Optimizing an index

Index optimization is the process that merges multiple index files together in
order to reduce their number and thus minimize the time it takes to read in the
index at search time. Recall from section 2.7 that while it’s adding new Documents
to an index, Lucene buffers several Documents in memory before combining them
into a segment that it writes onto a disk, optionally merging this new segment
with previously created segments. Although you can control the segment-merg-
ing process with mergeFactor, maxMergeDocs, and minMergeDocs, when indexing is
done you could still be left with several segments in the index.

 Searching an index made up of multiple segments works properly, but
Lucene’s API lets you further optimize the index and thereby reduce Lucene’s
resource consumption and improve search performance. Index optimization
merges all index segments into a single segment. You can optimize an index with
a single call to IndexWriter’s optimize() method. (You may have noticed such
calls in previous code listings, so we’ll omit a separate listing here.) Index optimi-
zation involves a lot of disk IO, so use it judiciously.

 Figures 2.5 and 2.6 show the difference in index structure between an unopti-
mized and an optimized multifile index, respectively.

 It’s important to emphasize that optimizing an index only affects the speed of searches
against that index, and doesn’t affect the speed of indexing. Adding new Documents to an
unoptimized index is as fast as adding them to an optimized index. The increase
in search performance comes from the fact that with an optimized index, Lucene
needs to open and process fewer files than when running a search against an
unoptimized index. If you take another look at figures 2.5 and 2.6, you can see
that the optimized index has far fewer index files.

Optimizing disk space requirements
It’s worthwhile to mention that while optimizing an index, Lucene merges exist-
ing segments by creating a brand-new segment whose content in the end repre-
sents the content of all old segments combined. Thus, while the optimization is
in progress, disk space usage progressively increases. When it finishes creating
the new segment, Lucene discards all old segments by removing their index files.
Consequently, just before the old segments are removed, the disk space usage of
an index doubles because both the combined new unified segment and all the
old segments are present in the index. After optimization, the indexes disk usage
falls back to the same level as before optimization. Keep in mind that the rules of
index optimization hold for both multifile and compound indexes.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Optimizing an index 57
Why optimize?
Although fully unoptimized indexes perform flawlessly for most applications,
applications that handle large indexes will benefit from working with optimized
indexes. Environments that keep references to multiple indexes open for search-
ing will especially benefit, because their use of fully optimized indexes will
require fewer open file descriptors.

 Suppose you’re writing a server application that will ultimately result in every
user having their own index to which new documents will slowly be added over
time. As documents are added to each index, the number of segments in each
index will grow, too. This means that while searching such unoptimized indexes,
Lucene will have to keep references to a large number of open files; it will even-
tually reach the limit set by your operating system. To aid the situation, you

Figure 2.5 Index structure of an unoptimized multifile index showing multiple segments in
an index directory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

58 CHAPTER 2
Indexing
should develop a system that allows for a periodic index optimization. The
mechanism can be as simple as having a standalone application that periodically
iterates over all your users’ indexes and runs the following:

IndexWriter writer = new IndexWriter("/path/to/index",
 analyzer, false);
writer.optimize();
writer.close();

Of course, if this is run from a standalone application, you must be careful about
concurrent index modification. An index should be modified by only a single
operating system process at a time. In other words, only a single process should
open index with IndexWriter at a time. As you’ll see in the remaining sections of
this chapter, Lucene uses a file-based locking mechanism to try to prevent this
type of concurrent index modification.

When to optimize
Although an index can be optimized by a single process at any point during
indexing, and doing so won’t damage the index or make it unavailable for
searches, optimizing an index while performing indexing operation isn’t recom-
mended. It’s best to optimize an index only at the very end, when you know that
the index will remain unchanged for a while. Optimizing during indexing will
only make indexing take longer.

Figure 2.6 Index structure of a fully optimized multifile index showing a single segment in
an index directory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Concurrency, thread-safety, and locking issues 59
NOTE Contrary to a popular belief, optimizing an index doesn’t improve
indexing speed. Optimizing an index improves only the speed of
searching by minimizing the number of index files that need to be
opened, processed, and searched. Optimize an index only at the end of
the indexing process, when you know the index will remain unmodified
for a while.

2.9 Concurrency, thread-safety, and locking issues

In this section, we cover three closely related topics: concurrent index access,
thread-safety of IndexReader and IndexWriter, and the locking mechanism that
Lucene uses to prevent index corruption. These issues are often misunderstood
by users new to Lucene. Understanding these topics is important, because it will
eliminate surprises that can result when your indexing application starts serving
multiple users simultaneously or when it has to deal with a sudden need to scale
by parallelizing some of its operations.

2.9.1 Concurrency rules

Lucene provides several operations that can modify an index, such as document
indexing, updating, and deletion; when using them, you need to follow certain
rules to avoid index corruption. These issues raise their heads frequently in web
applications, where multiple requests are typically handled simultaneously.
Lucene’s concurrency rules are simple but should be strictly followed:

■ Any number of read-only operations may be executed concurrently. For
instance, multiple threads or processes may search the same index in parallel.

■ Any number of read-only operations may be executed while an index is
being modified. For example, users can search an index while it’s being
optimized or while new documents are being added to the index, updated,
or deleted from the index.

■ Only a single index-modifying operation may execute at a time. An index
should be opened by a single IndexWriter or a single IndexReader at a time.

Based on these concurrency rules, we can create a more comprehensive set of
examples, shown in table 2.2. These rules represent the allowed and disallowed
concurrent operations on a single index.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

60 CHAPTER 2
Indexing
NOTE When you’re running operations that modify an index, always keep in
mind that only one index-modifying operation should be run on the
same index at a time.

2.9.2 Thread-safety

It’s important to know that although making simultaneous index modifications
with multiple instances of IndexWriter or IndexReader isn’t allowed, as shown in
table 2.2, both of these classes are thread-safe. Therefore, a single instance of
either class can be shared among multiple threads, and all calls to its index-modifying
methods will be properly synchronized so that index modifications are executed
one after the other. Figure 2.7 depicts such a scenario.

 Additional external synchronization is unnecessary. Despite the fact that both
classes are thread-safe, an application using Lucene must ensure that index-
modifying operations of these two classes don’t overlap. That is to say, before
adding new documents to an index, you must close all IndexReader instances that
have deleted Documents from the same index. Similarly, before deleting or updat-
ing documents in an index, you must close the IndexWriter instance that opened
that same index before.

 The concurrency matrix in the table 2.3 gives an overview of operations that
can or can’t be executed simultaneously. It assumes that a single instance of
IndexWriter or a single instance of IndexReader is used. Note that we don’t list

Table 2.2 Examples of allowed and disallowed concurrent operations performed on a single
Lucene index

Operation Allowed or disallowed

Running multiple concurrent searches against the same index Allowed

Running multiple concurrent searches against an index that is being built,
optimized, or merged with another index, or whose documents are being
deleted or updated

Allowed

Adding or updating documents in the same index using multiple instances
of IndexWriter

Disallowed

Failing to close the IndexReader that was used to delete documents
from an index before opening a new IndexWriter to add more
documents to the same index

Disallowed

Failing to close the IndexWriter that was used to add documents to an
index before opening a new IndexReader to delete or update
documents from the same index

Disallowed
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Concurrency, thread-safety, and locking issues 61
updating as a separate operation because an update is really a delete operation
followed by an add operation, as you saw in section 2.2.4

This matrix can be summarized as follows:

■ A document can’t be added (IndexWriter) while a document is being deleted
(IndexReader).

■ A document can’t be deleted (IndexReader) while the index is being optimized
(IndexWriter).

■ A document can’t be deleted (IndexReader) while the index is being merged
(IndexWriter).

Table 2.3 Concurrency matrix when the same instance of IndexWriter or IndexReader is used.
Marked intersections signify operations that can’t be executed simultaneously.

Query Read document Add Delete Optimize Merge

Query

Read document

Add X

Delete X X X

Optimize X

Merge X

Figure 2.7
A single IndexWriter or IndexReader
can be shared by multiple threads.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

62 CHAPTER 2
Indexing
From the matrix and its summary, you can see a pattern: an index-modifying
IndexReader operation can’t be executed while an index-modifying IndexWriter
operation is in progress. This rule is symmetrical: An index-modifying Index-
Writer operation can’t be executed while an index-modifying IndexReader oper-
ation is in progress.

 You can think of these Lucene concurrency rules as analogous to the rules of
good manners and proper and legal conduct in our society. Although these rules
don’t have to be strictly followed, not following them can have repercussions. In
real life, breaking a rule may land you in jail; in the world of Lucene, it could
corrupt your index. Lucene anticipates misuse and even misunderstanding of
concurrency issues, so it uses a locking mechanism to do its best to prevent inad-
vertent index corruption. Lucene’s index-locking mechanism is described in the
next section.

2.9.3 Index locking

Related to the concurrency issues in Lucene is the topic of locking. To prevent
index corruption from misuse of its API, Lucene creates file-based locks around all
code segments that need to be executed by a single process at a time. Each index
has its own set of lock files; by default, all lock files are created in a computer’s tem-
porary directory as specified by Java’s java.io.tmpdir system property.

 If you look at that directory while indexing documents, you’ll see Lucene’s
write.lock file; if you catch Lucene while it’s merging segments, you’ll notice the
commit.lock file, too. You can change the lock directory by setting the org.
apache.lucene.lockDir system property to the desired directory. This system
property can be set programmatically using a Java API, or it can be set from the
command line using -Dorg.apache.lucene.lockDir=/path/to/lock/dir syntax. If
you have multiple computers that need to access the same index stored on a
shared disk, you should set the lock directory explicitly so that applications on
different computers see each other’s locks. Because of known issues with lock files
and NFS, choose a directory that doesn’t reside on an NFS volume. Here’s what
both locks may look like:

% ls –1 /tmp/lucene*.lock

lucene-de61b2c77401967646cf8916982a09a0-write.lock
lucene-de61b2c77401967646cf8916982a09a0-commit.lock

The write.lock file is used to keep processes from concurrently attempting to
modify an index. More precisely, the write.lock is obtained by IndexWriter when
IndexWriter is instantiated and kept until it’s closed. The same lock file is also
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Concurrency, thread-safety, and locking issues 63
obtained by IndexReader when it’s used for deleting Documents, undeleting them,
or setting Field norms. As such, write.lock tends to lock the index for writing for
longer periods of time.

 The commit.lock is used whenever segments are being read or merged. It’s
obtained by an IndexReader before it reads the segments file, which names all
index segments, and it’s released only after IndexReader has opened and read all
the referenced segments. IndexWriter also obtains the commit.lock right before
it creates a new segments file and keeps it until it removes the index files that
have been made obsolete by operations such as segment merges. Thus, the com-
mit.lock may be created more frequently than the write.lock, but it should never
lock the index for long since during its existence index files are only opened or
deleted and only a small segments file is written to disk. Table 2.4 summarizes all
spots in the Lucene API that lock an index.

Table 2.4 A summary of all Lucene locks and operations that create and release them

Lock File Class Obtained in Released in Description

write.lock IndexWriter Constructor close() Lock released when
IndexWriter is closed

write.lock IndexReader delete(int) close() Lock released when
IndexReader is closed

write.lock IndexReader undeleteAll(int) close() Lock released when
IndexReader is closed

write.lock IndexReader setNorms
(int, String, byte)

close() Lock released when
IndexReader is closed

commit.lock IndexWriter Constructor Constructor Lock released as soon as
segment information is
read or written

commit.lock IndexWriter addIndexes
(IndexReader[])

addIndexes
(IndexReader[])

Lock obtained while the
new segment is written

commit.lock IndexWriter addIndexes
(Directory[])

addIndexes
(Directory[])

Lock obtained while the
new segment is written

commit.lock IndexWriter mergeSegments
(int)

mergeSegments
(int)

Lock obtained while the
new segment is written

commit.lock IndexReader open(Directory) open(Directory) Lock obtained until all
segments are read

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

64 CHAPTER 2
Indexing
You should be aware of two additional methods related to locking:

■ IndexReader’s isLocked(Directory)—Tells you whether the index specified
in its argument is locked. This method can be handy when an application
needs to check whether the index is locked before attempting one of the
index-modifying operations.

■ IndexReader’s unlock(Directory)—Does exactly what its name implies.
Although this method gives you power to unlock any Lucene index at any
time, using it is dangerous. Lucene creates locks for a good reason, and
unlocking an index while it’s being modified can result in a corrupt and
unusable index.

Although you now know which lock files Lucene uses, when it uses them, why it
uses them, and where they’re stored in the file system, you should resist touching
them. Furthermore, you should always rely on Lucene’s API to manipulate them.
If you don’t, your code may break if Lucene starts using a different locking mech-
anism in the future, or even if it changes the name or location of its lock files.

Locking in action
To demonstrate locking, listing 2.7 provides an example of a situation where
Lucene uses locks to prevent multiple index-modifying operations from running
against the same index simultaneously. In the testWriteLock() method, Lucene
blocks the second IndexWriter from opening an index that has already been
opened by another IndexWriter. This is an example of write.lock in action.

public class LockTest extends TestCase {

 private Directory dir;

 protected void setUp() throws IOException {

commit.lock SegmentReader doClose() doClose() Lock obtained while the
segment’s file is written
or rewritten

commit.lock SegmentReader undeleteAll() undeleteAll() Lock obtained while the
segment’s .del file is
removed

Listing 2.7 Using file-based locks to prevent index corruption

Table 2.4 A summary of all Lucene locks and operations that create and release them (continued)

Lock File Class Obtained in Released in Description
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Concurrency, thread-safety, and locking issues 65
 String indexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index";
 dir = FSDirectory.getDirectory(indexDir, true);
 }

 public void testWriteLock() throws IOException {
 IndexWriter writer1 = null;
 IndexWriter writer2 = null;

 try {
 writer1 = new IndexWriter(dir, new SimpleAnalyzer(), true);
 writer2 = new IndexWriter(dir, new SimpleAnalyzer(), true);

 fail("We should never reach this point");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 writer1.close();
 assertNull(writer2);
 }
 }

 public void testCommitLock() throws IOException {
 IndexReader reader1 = null;
 IndexReader reader2 = null;

 try {
 IndexWriter writer = new IndexWriter(dir, new SimpleAnalyzer(),
 true);
 writer.close();
 reader1 = IndexReader.open(dir);
 reader2 = IndexReader.open(dir);
 }
 finally {
 reader1.close();
 reader2.close();
 }
 }
}

The testCommitLock() method demonstrates the use of a commit.lock that is
obtained in IndexReader’s open(Directory) method and released by the same
method as soon as all index segments have been read. Because the lock is released
by the same method that obtained it, we’re able to access the same directory with
the second IndexReader even before the first one has been closed. (You may wonder

Expected exception:
only one IndexWriter
allowed on single index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

66 CHAPTER 2
Indexing
about the IndexWriter you see in this method: Its sole purpose is to seed the index
by creating the required segments file, which contains information about all exist-
ing index segments. Without the segments file IndexReader would be lost, because
it wouldn’t know which segments to read from the index directory.)

 When we run this code we see an exception stack trace caused by the locked
index, which resembles the following stack trace:

java.io.IOException: Lock obtain timed out
 at org.apache.lucene.store.Lock.obtain(Lock.java:97)
 at
org.apache.lucene.index.IndexWriter.<init>(IndexWriter.java:173)
 at lia.indexing.LockTest.testWriteLock(LockTest.java:34)

As we mentioned earlier, new users of Lucene sometimes don’t have a good
understanding of the concurrency issues described in this section and conse-
quently run into locking issues, such as the one show in the previous stack trace.
If you see similar exceptions in your applications, please don’t disregard them if
the consistency of your indexes is at all important to you. Lock-related excep-
tions are typically a sign of a misuse of the Lucene API; if they occur in your
application, you should resolve them promptly.

2.9.4 Disabling index locking

We strongly discourage meddling with Lucene’s locking mechanism and disre-
garding the lock-related exception. However, in some situations you may want to
disable locking in Lucene, and doing so won’t corrupt your index. For instance,
your application may need to access a Lucene index stored on a CD-ROM. A CD is
a read-only medium, which means your application will be operating in a read-
only mode, too. In other words, your application will be using Lucene only to
search the index and won’t modify the index in any way. Although Lucene already
stores its lock files in the system’s temporary directory—a directory usually open
for writing by any user of the system—you can disable both write.lock and commit.
lock by setting the disableLuceneLocks system property to the string “true”.

2.10 Debugging indexing

Let’s discuss one final, fairly unknown Lucene feature (if we may so call it). If you
ever need to debug Lucene’s index-writing process, remember that you can get
Lucene to output information about its indexing operations by setting Index-
Writer’s public instance variable infoStream to one of the OutputStreams, such as
System.out:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 67
IndexWriter writer = new IndexWriter(dir, new SimpleAnalyzer(),
 true);
writer.infoStream = System.out;
...

This reveals information about segment merges, as shown here, and may help
you tune indexing parameters described earlier in the chapter:

merging segments _0 (1 docs) _1 (1 docs) _2 (1 docs)
_3 (1 docs) _4 (1 docs) _5 (1 docs) _6 (1 docs)
_7 (1 docs) _8 (1 docs)_9 (1 docs) into _a (10 docs)
merging segments _b (1 docs) _c (1 docs) _d (1 docs)
_e (1 docs) _f (1 docs) _g (1 docs) _h (1 docs)
_i (1 docs) _j (1 docs) k (1 docs) into _l (10 docs)
merging segments _m (1 docs) _n (1 docs) _o (1 docs)
_p (1 docs) _q (1 docs) _r (1 docs) _s (1 docs)
_t (1 docs) _u (1 docs) _v (1 docs) into _w (10 docs)

In addition, if you need to peek inside your index once it’s built, you can use
Luke: a handy third-party tool that we discuss in section 8.2, page 269.

2.11 Summary

This chapter has given you a solid understanding of how a Lucene index oper-
ates. In addition to adding Documents to an index, you should now be able to
remove and update indexed Documents as well as manipulate a couple of index-
ing factors to fine-tune several aspects of indexing to meet your needs. The
knowledge about concurrency, thread-safety, and locking is essential if you’re
using Lucene in a multithreaded application or a multiprocess system. By now
you should be dying to learn how to search with Lucene, and that’s what you’ll
read about in the next chapter.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Adding search to
your application

This chapter covers
■ Querying a Lucene index
■ Working with search results
■ Understanding Lucene scoring
■ Parsing human-entered query expressions
68

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Implementing a simple search feature 69
If we can’t find it, it effectively doesn’t exist. Even if we have indexed documents,
our effort is wasted unless it pays off by providing a reliable and fast way to find
those documents. For example, consider this scenario:

Give me a list of all books published in the last 12 months on the subject of
“Java” where “open source” or “Jakarta” is mentioned in the contents. Restrict
the results to only books that are on special. Oh, and under the covers, also
ensure that books mentioning “Apache” are picked up, because we explicitly
specified “Jakarta”. And make it snappy, on the order of milliseconds for
response time.1

Do you have a repository of hundreds, thousands, or millions of documents that
needs similar search capability?

 Providing search capability using Lucene’s API is straightforward and easy,
but lurking under the covers is a sophisticated mechanism that can meet your
search requirements such as returning the most relevant documents first and
retrieving the results incredibly fast. This chapter covers common ways to search
using the Lucene API. The majority of applications using Lucene search can pro-
vide a search feature that performs nicely using the techniques shown in this
chapter. Chapter 5 delves into more advanced search capabilities, and chapter 6
elaborates on ways to extend Lucene’s classes for even greater searching power.

 We begin with a simple example showing that the code you write to imple-
ment search is generally no more than a few lines long. Next we illustrate the
scoring formula, providing a deep look into one of Lucene’s most special
attributes. With this example and a high-level understanding of how Lucene
ranks search results, we’ll then explore the various types of search queries
Lucene handles natively.

3.1 Implementing a simple search feature

Suppose you’re tasked with adding search to an application. You’ve tackled get-
ting the data indexed, but now it’s time to expose the full-text searching to the
end users. It’s hard to imagine that adding search could be any simpler than it is
with Lucene. Obtaining search results requires only a few lines of code, literally.
Lucene provides easy and highly efficient access to those search results, too, free-
ing you to focus your application logic and user interface around those results.

1 We cover all the pieces to make this happen with Lucene, including a specials filter in chapter 6, syn-
onym injection in chapter 4, and the Boolean logic in this chapter.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

70 CHAPTER 3
Adding search to your application
 In this chapter, we’ll limit our discussion to the primary classes in Lucene’s API
that you’ll typically use for search integration (shown in table 3.1). Sure, there is
more to the story, and we go beyond the basics in chapters 5 and 6. In this chap-
ter, we’ll cover the details you’ll need for the majority of your applications.

When you’re querying a Lucene index, an ordered collection of hits is returned.
The hits collection is ordered by score by default.2 Lucene computes a score (a
numeric value of relevance) for each document, given a query. The hits them-
selves aren’t the actual matching documents, but rather are references to the
documents matched. In most applications that display search results, users
access only the first few documents, so it isn’t necessary to retrieve the actual doc-
uments for all results; you need to retrieve only the documents that will be pre-
sented to the user. For large indexes, it wouldn’t even be possible to collect all
matching documents into available physical computer memory.

 In the next section, we put IndexSearcher, Query, and Hits to work with some
basic term searches.

3.1.1 Searching for a specific term

IndexSearcher is the central class used to search for documents in an index. It
has several overloaded search methods. You can search for a specific term using
the most commonly used search method. A term is a value that is paired with its
containing field name—in this case, subject.

Table 3.1 Lucene’s primary searching API

Class Purpose

IndexSearcher Gateway to searching an index. All searches come through an IndexSearcher
instance using any of the several overloaded search methods.

Query (and
subclasses)

Concrete subclasses encapsulate logic for a particular query type. Instances of
Query are passed to an IndexSearcher’s search method.

QueryParser Processes a human-entered (and readable) expression into a concrete Query object.

Hits Provides access to search results. Hits is returned from IndexSearcher's
search method.

2 The word collection in this sense does not refer to java.util.Collection.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Implementing a simple search feature 71
NOTE Important: The original text may have been normalized into terms by
the analyzer, which may eliminate terms (such as stop words), convert
terms to lowercase, convert terms to base word forms (stemming), or in-
sert additional terms (synonym processing). It’s crucial that the terms passed
to IndexSearcher be consistent with the terms produced by analysis of
the source documents. Chapter 4 discusses the analysis process in detail.

Using our example book data index, we’ll query for the words ant and junit,
which are words we know were indexed. Listing 3.1 performs a term query and
asserts that the single document expected is found. Lucene provides several
built-in Query types (see section 3.4), TermQuery being the most basic.

public class SearchingTest extends LiaTestCase {

 public void testTerm() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Term t = new Term("subject", "ant");
 Query query = new TermQuery(t);
 Hits hits = searcher.search(query);
 assertEquals("JDwA", 1, hits.length());

 t = new Term("subject", "junit");
 hits = searcher.search(new TermQuery(t));
 assertEquals(2, hits.length());

 searcher.close();
 }
}

A Hits object is returned from our search. We’ll discuss this object in section 3.2,
but for now just note that the Hits object encapsulates access to the underlying
Documents. This encapsulation makes sense for efficient access to documents. Full
documents aren’t immediately returned; they’re fetched on demand. In this
example we didn’t concern ourselves with the actual documents associated with
the hits returned because we were only interested in asserting that the proper
number of documents were found.

 Next, we discuss how to transform a user-entered query expression into a
Query object.

Listing 3.1 SearchingTest: Demonstrates the simplicity of searching using a
TermQuery
Licensed to Jason Ruesch <krhonos713@hotmail.com>

72 CHAPTER 3
Adding search to your application
3.1.2 Parsing a user-entered query expression: QueryParser

Two more features round out what the majority of searching applications require:
sophisticated query expression parsing and access to the documents returned.
Lucene’s search methods require a Query object. Parsing a query expression is the
act of turning a user-entered query such as “mock OR junit” into an appropriate
Query object instance;3 in this case, the Query object would be an instance of
BooleanQuery with two nonrequired clauses, one for each term. The following
code parses two query expressions and asserts that they worked as expected. After
returning the hits, we retrieve the title from the first document found:

public void testQueryParser() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);

 Query query = QueryParser.parse("+JUNIT +ANT -MOCK",
 "contents",
 new SimpleAnalyzer());
 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 Document d = hits.doc(0);
 assertEquals("Java Development with Ant", d.get("title"));

 query = QueryParser.parse("mock OR junit",
 "contents",
 new SimpleAnalyzer());
 hits = searcher.search(query);
 assertEquals("JDwA and JIA", 2, hits.length());
}

Lucene includes an interesting feature that parses query expressions through the
QueryParser class. It parses rich expressions such as the two shown ("+JUNIT +ANT
-MOCK" and "mock OR junit") into one of the Query implementations. Dealing
with human-entered queries is the primary purpose of the QueryParser.

 QueryParser requires an analyzer to break pieces of the query into terms. In the
first expression, the query was entirely uppercased. The terms of the contents
field, however, were lowercased when indexed. QueryParser, in this example, uses
SimpleAnalyzer, which lowercases the terms before constructing a Query object.
(Analysis is covered in great detail in the next chapter, but it’s intimately inter-
twined with indexing text and searching with QueryParser.) The main point
regarding analysis to consider in this chapter is that you need to be sure to query
on the actual terms indexed. QueryParser is the only searching piece that uses an

3 Query expressions are similar to SQL expressions used to query a database in that the expression must
be parsed into something at a lower level that the database server can understand directly.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Implementing a simple search feature 73
analyzer. Querying through the API using TermQuery and the others discussed in
section 3.4 doesn’t use an analyzer but does rely on matching terms to what was
indexed. In section 4.1.2, we talk more about the interactions of QueryParser and
the analysis process.

 Equipped with the examples shown thus far, you’re more than ready to begin
searching your indexes. There are, of course, many more details to know about
searching. In particular, QueryParser requires additional explanation. Next is an
overview of how to use QueryParser, which we return to in greater detail later in
this chapter.

Using QueryParser
Before diving into the details of QueryParser (which we do in section 3.5), let’s
first look at how it’s used in a general sense. QueryParser has a static parse()
method to allow for the simplest use. Its signature is

static public Query
 parse(String query, String field, Analyzer analyzer)
 throws ParseException

The query String is the expression to be parsed, such as “+cat +dog”. The sec-
ond parameter, field, is the name of the default field to associate with terms in
the expression (more on this in section 3.5.4). The final argument is an Analyzer
instance. (We discuss analyzers in detail in the next chapter and then cover the
interactions between QueryParser and the analyzer in section 4.1.2.) The
testQueryParser() method shown in section 3.1.2 demonstrates using the static
parse() method.

 If the expression fails to parse, a ParseException is thrown, a condition that
your application should handle in a graceful manner. ParseException’s message
gives a reasonable indication of why the parsing failed; however, this description
may be too technical for end users.

 The static parse() method is quick and convenient to use, but it may not be
sufficient. Under the covers, the static method instantiates an instance of Query-
Parser and invokes the instance parse() method. You can do the same thing
yourself, which gives you a finer level of control. There are various settings that
can be controlled on a QueryParser instance, such as the default operator (which
defaults to OR). These settings also include locale (for date parsing), default
phrase slop, and whether to lowercase wildcard queries. The QueryParser con-
structor takes the default field and analyzer. The instance parse() method is
passed the expression to parse. See section 3.5.6 for an example.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

74 CHAPTER 3
Adding search to your application
Handling basic query expressions with QueryParser
QueryParser translates query expressions into one of Lucene’s built-in query
types. We’ll cover each query type in section 3.4; for now, take in the bigger
picture provided by table 3.2, which shows some examples of expressions and
their translation.

With this broad picture of Lucene’s search capabilities, you’re ready to dive into
details. We’ll revisit QueryParser in section 3.5, after we cover the more founda-
tional pieces.

Table 3.2 Expression examples that QueryParser handles

Query expression Matches documents that…

java Contain the term java in the default field

java junit
java or junit

Contain the term java or junit, or both, in the default fielda

a The default operator is OR. It can be set to AND (see section 3.5.2).

+java +junit
java AND junit

Contain both java and junit in the default field

title:ant Contain the term ant in the title field

title:extreme
–subject:sports
title:extreme
AND NOT subject:sports

Have extreme in the title field and don’t have sports in the
subject field

(agile OR extreme) AND
methodology

Contain methodology and must also contain agile and/or extreme, all
in the default field

title:"junit in action" Contain the exact phrase “junit in action” in the title field

title:"junit action"~5 Contain the terms junit and action within five positions of one another

java* Contain terms that begin with java, like javaspaces, javaserver, and
java.net

java~ Contain terms that are close to the word java, such as lava

lastmodified:
[1/1/04 TO 12/31/04]

Have lastmodified field values between the dates January 1,
2004 and December 31, 2004
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using IndexSearcher 75
3.2 Using IndexSearcher

Let’s take a closer look at Lucene’s IndexSearcher class. Like the rest of Lucene’s
primary API, it’s simple to use. Searches are done using an instance of Index-
Searcher. Typically, you’ll use one of the following approaches to construct
an IndexSearcher:

■ By Directory
■ By a file system path

We recommend using the Directory constructor—it’s better to decouple search-
ing from where the index resides, allowing your searching code to be agnostic to
whether the index being searched is on the file system, in RAM, or elsewhere.
Our base test case, LiaTestCase, provides directory, a Directory implementa-
tion. Its actual implementation is an FSDirectory loaded from a file system
index. Our setUp() method opens an index using the static FSDirectory.get-
Directory() method, with the index path defined from a JVM system property:

public abstract class LiaTestCase extends TestCase {
 private String indexDir = System.getProperty("index.dir");
 protected Directory directory;

 protected void setUp() throws Exception {
 directory = FSDirectory.getDirectory(indexDir,false);
 }

// ...
}

The last argument to FSDirectory.getDirectory() is false, indicating that we want
to open an existing index, not construct a new one. An IndexSearcher is created
using a Directory instance, as follows:

IndexSearcher searcher = new IndexSearcher(directory);

After constructing an IndexSearcher, we call one of its search methods to per-
form a search. The three main search method signatures available to an Index-
Searcher instance are shown in table 3.3. This chapter only deals with
search(Query) method, and that may be the only one you need to concern your-
self with. The other search method signatures, including the sorting variants, are
covered in chapter 5.

Licensed to Jason Ruesch <krhonos713@hotmail.com>

76 CHAPTER 3
Adding search to your application
An IndexSearcher instance searches only the index as it existed at the time the
IndexSearcher was instantiated. If indexing is occurring concurrently with
searching, newer documents indexed won’t be visible to searches. In order to see
the new documents, you must instantiate a new IndexSearcher.

3.2.1 Working with Hits

Now that we’ve called search(Query), we have a Hits object at our disposal. The
search results are accessed through Hits. Typically, you’ll use one of the search
methods that returns a Hits object, as shown in table 3.3. The Hits object provides
efficient access to search results. Results are ordered by relevance—in other
words, by how well each document matches the query (sorting results in other
ways is discussed in section 5.1).

 There are only four methods on a Hits instance; they’re listed in table 3.4.
The method Hits.length() returns the number of matching documents. A match-
ing document is one with a score greater than zero, as defined by the scoring for-
mula covered in section 3.3. The hits, by default, are in decreasing score order.

Table 3.3 Primary IndexSearcher search methods

IndexSearcher.search
method signature

When to use

Hits search(Query query) Straightforward searches needing no filtering.

Hits search(Query query,
Filter filter)

Searches constrained to a subset of available documents, based on
filter criteria.

void search(Query query,
HitCollector results)

Used only when all documents found from a search will be needed.
Generally, only the top few documents from a search are needed, so
using this method could be a performance killer.

Table 3.4 Hits methods for efficiently accessing search results

Hits method Return value

length() Number of documents in the Hits collection

doc(n) Document instance of the nth top-scoring document

id(n) Document ID of the nth top-scoring document

score(n) Normalized score (based on the score of the topmost document) of the nth top-
scoring document, guaranteed to be greater than 0 and less than or equal to 1
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using IndexSearcher 77
The Hits object caches a limited number of documents and maintains a most-
recently-used list. The first 100 documents are automatically retrieved and
cached initially. The Hits collection lends itself to environments where users are
presented with only the top few documents and typically don’t need more than
those because only the best-scoring hits are the desired documents.

 The methods doc(n), id(n), and score(n) require documents to be loaded
from the index when they aren’t already cached. This leads us to recommend
only calling these methods for documents you truly need to display or access;
defer calling them until needed.

3.2.2 Paging through Hits

Presenting search results to end users most often involves displaying only the
first 20 or so most relevant documents. Paging through Hits is a common need.
There are a couple of implementation approaches:

■ Keep the original Hits and IndexSearcher instances available while the
user is navigating the search results.

■ Requery each time the user navigates to a new page.

It turns out that requerying is most often the best solution. Requerying elimi-
nates the need to store per-user state. In a web application, staying stateless (no
HTTP session) is often desirable. Requerying at first glance seems a waste, but
Lucene’s blazing speed more than compensates.

 In order to requery, the original search is reexecuted and the results are dis-
played beginning on the desired page. How the original query is kept depends
on your application architecture. In a web application where the user types in an
expression that is parsed with QueryParser, the original expression could be
made part of the hyperlinks for navigating the pages and reparsed for each
request, or the expression could be kept in a hidden HTML field or as a cookie.

 Don’t prematurely optimize your paging implementations with caching or
persistence. First implement your paging feature with a straightforward requery;
chances are you’ll find this sufficient for your needs.

3.2.3 Reading indexes into memory

Using RAMDirectory is suitable for situations requiring only transient indexes,
but most applications need to persist their indexes. They will eventually need to
use FSDirectory, as we’ve shown in the previous two chapters.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

78 CHAPTER 3
Adding search to your application
 However, in some scenarios, indexes are used in a read-only fashion. Sup-
pose, for instance, that you have a computer whose main memory exceeds the
size of a Lucene index stored in the file system. Although it’s fine to always
search the index stored in the index directory, you could make better use of your
hardware resources by loading the index from the slower disk into the faster RAM
and then searching that in-memory index. In such cases, RAMDirectory’s con-
structor can be used to read a file system–based index into memory, allowing the
application that accesses it to benefit from the superior speed of the RAM:

RAMDirectory ramDir = new RAMDirectory(dir);

RAMDirectory has several overloaded constructors, allowing a java.io.File, a
path String, or another Directory to load into RAM. Using an IndexSearcher
with a RAMDirectory is straightforward and no different than using an FSDirectory.

3.3 Understanding Lucene scoring

We chose to discuss this complex topic early in this chapter so you’ll have a gen-
eral sense of the various factors that go into Lucene scoring as you continue to
read. Without further ado, meet Lucene’s similarity scoring formula, shown in
figure 3.1. The score is computed for each document (d) matching a specific.

NOTE If this equation or the thought of mathematical computations scares
you, you may safely skip this section. Lucene scoring is top-notch as is,
and a detailed understanding of what makes it tick isn’t necessary to
take advantage of Lucene’s capabilities.

This score is the raw score. Scores returned from Hits aren’t necessarily the raw
score, however. If the top-scoring document scores greater than 1.0, all scores are
normalized from that score, such that all scores from Hits are guaranteed to be
1.0 or less. Table 3.5 describes each of the factors in the scoring formula.

Figure 3.1 Lucene uses this formula to determine a document score based on a query.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Understanding Lucene scoring 79
Boost factors are built into the equation to let you affect a query or field’s influ-
ence on score. Field boosts come in explicitly in the equation as the boost(t.field
in d) factor, set at indexing time. The default value of field boosts, logically, is 1.0.
During indexing, a Document can be assigned a boost, too. A Document boost factor
implicitly sets the starting field boost of all fields to the specified value. Field-spe-
cific boosts are multiplied by the starting value, giving the final value of the field
boost factor. It’s possible to add the same named field to a Document multiple
times, and in such situations the field boost is computed as all the boosts specified
for that field and document multiplied together. Section 2.3 discusses index-time
boosting in more detail.

 In addition to the explicit factors in this equation, other factors can be com-
puted on a per-query basis as part of the queryNorm factor. Queries themselves can
have an impact on the document score. Boosting a Query instance is sensible only
in a multiple-clause query; if only a single term is used for searching, boosting it
would boost all matched documents equally. In a multiple-clause boolean query,
some documents may match one clause but not another, enabling the boost factor
to discriminate between queries. Queries also default to a 1.0 boost factor.

 Most of these scoring formula factors are controlled through an implementa-
tion of the Similarity class. DefaultSimilarity is the implementation used
unless otherwise specified. More computations are performed under the covers
of DefaultSimilarity; for example, the term frequency factor is the square root of
the actual frequency. Because this is an “in action” book, it’s beyond the book’s
scope to delve into the inner workings of these calculations. In practice, it’s

Table 3.5 Factors in the scoring formula

Factor Description

tf(t in d) Term frequency factor for the term (t) in the document (d).

idf(t) Inverse document frequency of the term.

boost(t.field in d) Field boost, as set during indexing.

lengthNorm(t.field in d) Normalization value of a field, given the number of terms within the
field. This value is computed during indexing and stored in the index.

coord(q, d) Coordination factor, based on the number of query terms the
document contains.

queryNorm(q) Normalization value for a query, given the sum of the squared weights
of each of the query terms.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

80 CHAPTER 3
Adding search to your application
extremely rare to need a change in these factors. Should you need to change these
factors, please refer to Similarity’s Javadocs, and be prepared with a solid under-
standing of these factors and the effect your changes will have.

 It’s important to note that a change in index-time boosts or the Similarity
methods used during indexing require that the index be rebuilt for all factors to
be in sync.

3.3.1 Lucene, you got a lot of ‘splainin’ to do!

Whew! The scoring formula seems daunting—and it is. We’re talking about fac-
tors that rank one document higher than another based on a query; that in and
of itself deserves the sophistication going on. If you want to see how all these fac-
tors play out, Lucene provides a feature called Explanation. IndexSearcher has
an explain method, which requires a Query and a document ID and returns an
Explanation object.

 The Explanation object internally contains all the gory details that factor into
the score calculation. Each detail can be accessed individually if you like; but gen-
erally, dumping out the explanation in its entirety is desired. The .toString()
method dumps a nicely formatted text representation of the Explanation. We
wrote a simple program to dump Explanations, shown here:

public class Explainer {
 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println("Usage: Explainer <index dir> <query>");
 System.exit(1);
 }

 String indexDir = args[0];
 String queryExpression = args[1];

 FSDirectory directory =
 FSDirectory.getDirectory(indexDir, false);

 Query query = QueryParser.parse(queryExpression,
 "contents", new SimpleAnalyzer());

 System.out.println("Query: " + queryExpression);

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(query);

 for (int i = 0; i < hits.length(); i++) {
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 81
 Explanation explanation =
 searcher.explain(query, hits.id(i));

 System.out.println("----------");
 Document doc = hits.doc(i);
 System.out.println(doc.get("title"));
 System.out.println(explanation.toString());
 }
 }
}

Using the query junit against our sample index produced the following output;
notice that the most relevant title scored best:

Query: junit

JUnit in Action
0.65311843 = fieldWeight(contents:junit in 2), product of:
 1.4142135 = tf(termFreq(contents:junit)=2)
 1.8472979 = idf(docFreq=2)
 0.25 = fieldNorm(field=contents, doc=2)

Java Development with Ant
0.46182448 = fieldWeight(contents:junit in 1), product of:
 1.0 = tf(termFreq(contents:junit)=1)
 1.8472979 = idf(docFreq=2)
 0.25 = fieldNorm(field=contents, doc=1)

JUnit in Action has the term junit twice in its contents field. The contents field in
our index is an aggregation of the title and subject fields to allow a single field
for searching.
Java Development with Ant has the term junit only once in its contents field.

There is also a .toHtml() method that outputs the same hierarchical structure,
except as nested HTML elements suitable for outputting in a web browser.
In fact, the Explanation feature is a core part of the Nutch project (see the case
study in section 10.1), allowing for transparent ranking.

 Explanations are handy to see the inner workings of the score calculation, but
they expend the same amount of effort as a query. So, be sure not to use extrane-
ous Explanation generation.

3.4 Creating queries programmatically

As you saw in section 3.2, querying Lucene ultimately requires a call to Index-
Searcher’s search using an instance of Query. Query subclasses can be instantiated
directly; or, as we discussed in section 3.1.2, a Query can be constructed through

Generate
Explanation of single
Document for query

Output
Explanation

“junit”
appears twice in
contents

 b

“junit”
appears once
in contents

 c

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

82 CHAPTER 3
Adding search to your application
the use of a parser such as QueryParser. If your application will rely solely on
QueryParser to construct Query objects, understanding Lucene’s direct API capa-
bilities is still important because QueryParser uses them.

 Even if you’re using QueryParser, combining a parsed query expression with
an API-created Query is a common technique to augment, refine, or constrain a
human-entered query. For example, you may want to restrict free-form parsed
expressions to a subset of the index, like documents only within a category.
Depending on your search’s user interface, you may have date pickers to select a
date range, drop-downs for selecting a category, and a free-form search box.
Each of these clauses can be stitched together using a combination of Query-
Parser, BooleanQuery, RangeQuery, and a TermQuery. We demonstrate building a
similar aggregate query in section 5.5.4.

 This section covers each of Lucene’s built-in Query types. The QueryParser
expression syntax that maps to each Query type is provided.

3.4.1 Searching by term: TermQuery

The most elementary way to search an index is for a specific term. A term is the
smallest indexed piece, consisting of a field name and a text-value pair. Listing 3.1
provided an example of searching for a specific term. This code constructs a Term
object instance:

Term t = new Term("contents", "java");

A TermQuery accepts a single Term:

Query query = new TermQuery(t);

All documents that have the word java in a contents field are returned from
searches using this TermQuery. Note that the value is case-sensitive, so be sure to
match the case of terms indexed; this may not be the exact case in the original doc-
ument text, because an analyzer (see chapter 5) may have indexed things differently.

 TermQuerys are especially useful for retrieving documents by a key. If docu-
ments were indexed using Field.Keyword(), the same value can be used to retrieve
these documents. For example, given our book test data, the following code
retrieves the single document matching the ISBN provided:

public void testKeyword() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Term t = new Term("isbn", "1930110995");
 Query query = new TermQuery(t);
 Hits hits = searcher.search(query);
 assertEquals("JUnit in Action", 1, hits.length());
}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 83
A Field.Keyword field doesn’t imply that it’s unique, though. It’s up to you
to ensure uniqueness during indexing. In our data, isbn is unique among
all documents.

TermQuery and QueryParser
A single word in a query expression corresponds to a term. A TermQuery is
returned from QueryParser if the expression consists of a single word. The
expression java creates a TermQuery, just as we did with the API in testKeyword.

3.4.2 Searching within a range: RangeQuery

Terms are ordered lexicographically within the index, allowing for efficient
searching of terms within a range. Lucene’s RangeQuery facilitates searches from
a starting term through an ending term. The beginning and ending terms may
either be included or excluded. The following code illustrates range queries
inclusive of the begin and end terms:

public class RangeQueryTest extends LiaTestCase {
 private Term begin, end;

 protected void setUp() throws Exception {
 begin = new Term("pubmonth","198805");

 // pub date of TTC was October 1988
 end = new Term("pubmonth","198810");

 super.setUp();
 }

 public void testInclusive() throws Exception {
 RangeQuery query = new RangeQuery(begin, end, true);
 IndexSearcher searcher = new IndexSearcher(directory);

 Hits hits = searcher.search(query);
 assertEquals("tao", 1, hits.length());
 }
}

Our test data set has only one book, Tao Te Ching by Stephen Mitchell, published
between May 1988 and October 1988; it was published in October 1988. The
third argument to construct a RangeQuery is a boolean flag indicating whether
the range is inclusive. Using the same data and range, but exclusively, one less
book is found:

public void testExclusive() throws Exception {
 RangeQuery query = new RangeQuery(begin, end, false);
Licensed to Jason Ruesch <krhonos713@hotmail.com>

84 CHAPTER 3
Adding search to your application
 IndexSearcher searcher = new IndexSearcher(directory);

 Hits hits = searcher.search(query);
 assertEquals("there is no tao", 0, hits.length());
}

RangeQuery and QueryParser
QueryParser constructs RangeQuerys from the expression [begin TO end] or
{begin TO end}. Square brackets denote an inclusive range, and curly brackets
denote an exclusive range. If the begin and end terms represent dates (and parse
successively as such), then ranges over fields created as dates using DateField or
Keyword(String, Date) can be constructed. See section 3.5.5 for more on Range-
Query and QueryParser.

3.4.3 Searching on a string: PrefixQuery

Searching with a PrefixQuery matches documents containing terms beginning
with a specified string. It’s deceptively handy. The following code demon-
strates how you can query a hierarchical structure recursively with a simple Prefix-
Query. The documents contain a category keyword field representing a hierar-
chical structure:

public class PrefixQueryTest extends LiaTestCase {
 public void testPrefix() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);

 Term term = new Term("category",
 "/technology/computers/programming");
 PrefixQuery query = new PrefixQuery(term);

 Hits hits = searcher.search(query);
 int programmingAndBelow = hits.length();

 hits = searcher.search(new TermQuery(term));
 int justProgramming = hits.length();

 assertTrue(programmingAndBelow > justProgramming);
 }
}

Our PrefixQueryTest demonstrates the difference between a PrefixQuery and a
TermQuery. A methodology category exists below the /technology/computers/
programming category. Books in this subcategory are found with a PrefixQuery
but not with the TermQuery on the parent category.

Search for
programming
books, including
subcategories

Search only for
programming books,
not subcategories
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 85
PrefixQuery and QueryParser
QueryParser creates a PrefixQuery for a term when it ends with an asterisk (*)
in query expressions. For example, luc* is converted into a PrefixQuery using
luc as the term. By default, the prefix text is lowercased by QueryParser. See sec-
tion 3.5.7 for details on how to control this setting.

3.4.4 Combining queries: BooleanQuery

The various query types discussed here can be combined in complex ways using
BooleanQuery. BooleanQuery itself is a container of Boolean clauses. A clause is a
subquery that can be optional, required, or prohibited. These attributes allow for
logical AND, OR, and NOT combinations. You add a clause to a BooleanQuery
using this API method:

public void add(Query query, boolean required, boolean prohibited)

A BooleanQuery can be a clause within another BooleanQuery, allowing for sophis-
ticated groupings. Let’s look at some examples. First, here’s an AND query to
find the most recent books on one of our favorite subjects, search:

public void testAnd() throws Exception {
 TermQuery searchingBooks =
 new TermQuery(new Term("subject","search"));

 RangeQuery currentBooks =
 new RangeQuery(new Term("pubmonth","200401")
 new Term("pubmonth","200412"),
 true);

 BooleanQuery currentSearchingBooks = new BooleanQuery();
 currentSearchingBooks.add(searchingBook s, true, false);
 currentSearchingBooks.add(currentBooks, true, false);

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(currentSearchingBooks);

 assertHitsIncludeTitle(hits, "Lucene in Action");
}

// following method from base LiaTestCase class
protected final void assertHitsIncludeTitle(
 Hits hits, String title)
 throws IOException {
 for (int i=0; i < hits.length(); i++) {
 Document doc = hits.doc(i);
 if (title.equals(doc.get("title"))) {
 assertTrue(true);

All books with
subject “search”

 b

All books
in 2004

 c

Combines
two queries

 d

Custom
convenience

assert method

 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

86 CHAPTER 3
Adding search to your application
 return;
 }
 }

 fail("title '" + title + "' not found");
}

This query finds all books containing the subject "search".
This query find all books published in 2004. (Note that this could also be done
with a "2004" PrefixQuery.)
Here we combine the two queries into a single boolean query with both clauses
required (the second argument is true).
This custom convenience assert method allows more readable test cases.

BooleanQuery.add has two overloaded method signatures. One accepts a Boolean-
Clause, and the other accepts a Query and two boolean flags. A BooleanClause is a
container of a query and the two boolean flags, so we omit coverage of it. The
boolean flags are required and prohibited, respectively. There are four logical
combinations of these flags, but the case where both are true is an illogical and
invalid combination. A required clause means exactly that: Only documents
matching that clause are considered. Table 3.6 shows the various combinations
and effect of the required and prohibited flags.

Performing an OR query only requires setting the required and prohibited flags
both to false, as in this example:

public void testOr() throws Exception {
 TermQuery methodologyBooks = new TermQuery(
 new Term("category",
 "/technology/computers/programming/methodology"));

 TermQuery easternPhilosophyBooks = new TermQuery(
 new Term("category",
 "/philosophy/eastern"));

 BooleanQuery enlightenmentBooks = new BooleanQuery();

Custom
convenience
assert method

 e

 b
 c

 d

 e

Table 3.6 BooleanQuery clause attributes

 required

false true

prohibited
false Clause is optional Clause must match

true Clause must not match Invalid
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 87
 enlightenmentBooks.add(methodologyBooks, false, false);
 enlightenmentBooks.add(easternPhilosophyBooks, false, false);

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(enlightenmentBooks);

 assertHitsIncludeTitle(hits, "Extreme Programming Explained");
 assertHitsIncludeTitle(hits,
 "Tao Te Ching \u9053\u5FB7\u7D93"4);
}

BooleanQuerys are restricted to a maximum number of clauses; 1,024 is the
default. This limitation is in place to prevent queries from adversely affecting
performance. A TooManyClauses exception is thrown if the maximum is exceeded.
It may seem that this is an extreme number and that constructing this number of
clauses is unlikely, but under the covers Lucene does some of its own query rewrit-
ing for queries like RangeQuery and turns them into a BooleanQuery with nested
optional (not required, not prohibited) TermQuerys. Should you ever have the
unusual need of increasing the number of clauses allowed, there is a setMax-
ClauseCount(int) method on BooleanQuery.

BooleanQuery and QueryParser
QueryParser handily constructs BooleanQuerys when multiple terms are specified.
Grouping is done with parentheses, and the prohibited and required flags are
set when the –, +, AND, OR, and NOT operators are specified.

3.4.5 Searching by phrase: PhraseQuery

An index contains positional information of terms. PhraseQuery uses this infor-
mation to locate documents where terms are within a certain distance of one
another. For example, suppose a field contained the phrase “the quick brown fox
jumped over the lazy dog”. Without knowing the exact phrase, you can still find
this document by searching for documents with fields having quick and fox near
each other. Sure, a plain TermQuery would do the trick to locate this document
knowing either of those words; but in this case we only want documents that have
phrases where the words are either exactly side by side (quick fox) or have one
word in between (quick [irrelevant] fox).

 The maximum allowable positional distance between terms to be considered
a match is called slop. Distance is the number of positional moves of terms to

4 The \u notation is a Unicode escape sequence. In this case, these are the Chinese characters for Tao
Te Ching. We use this for our search of Asian characters in section 4.8.3.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

88 CHAPTER 3
Adding search to your application
reconstruct the phrase in order. Let’s take the phrase just mentioned and see
how the slop factor plays out. First we need a little test infrastructure, which
includes a setUp() method to index a single document and a custom matched
(String[], int) method to construct, execute, and assert a phrase query matched
the test document:

public class PhraseQueryTest extends TestCase {
 private IndexSearcher searcher;

 protected void setUp() throws IOException {
 // set up sample document
 RAMDirectory directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(), true);
 Document doc = new Document();
 doc.add(Field.Text("field",
 "the quick brown fox jumped over the lazy dog"));
 writer.addDocument(doc);
 writer.close();

 searcher = new IndexSearcher(directory);
 }

 private boolean matched(String[] phrase, int slop)
 throws IOException {
 PhraseQuery query = new PhraseQuery();
 query.setSlop(slop);

 for (int i=0; i < phrase.length; i++) {
 query.add(new Term("field", phrase[i]));
 }

 Hits hits = searcher.search(query);
 return hits.length() > 0;
 }
}

Because we want to demonstrate several phrase query examples, we wrote the
matched method to simplify the code. Phrase queries are created by adding terms
in the desired order. By default, a PhraseQuery has its slop factor set to zero,
specifying an exact phrase match. With our setUp() and helper matched method,
our test case succinctly illustrates how PhraseQuery behaves. Failing and passing
slop factors show the boundaries:

public void testSlopComparison() throws Exception {
 String[] phrase = new String[] {"quick", "fox"};

 assertFalse("exact phrase not found", matched(phrase, 0));

 assertTrue("close enough", matched(phrase, 1));
}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 89
Terms added to a phrase query don’t have to be in the same order found in the
field, although order does impact slop-factor considerations. For example, had
the terms been reversed in the query (fox and then quick), the number of moves
needed to match the document would be three, not one. To visualize this, con-
sider how many moves it would take to physically move the word fox two slots
past quick; you’ll see that it takes one move to move fox into the same position as
quick and then two more to move fox beyond quick sufficiently to match “quick
brown fox”.

 Figure 3.2 shows how the slop positions work in both of these phrase query
scenarios, and this test case shows the match in action:

public void testReverse() throws Exception {
 String[] phrase = new String[] {"fox", "quick"};

 assertFalse("hop flop", matched(phrase, 2));
 assertTrue("hop hop slop", matched(phrase, 3));
}

Let’s now examine how multiple term phrase queries work.

Multiple-term phrases
PhraseQuery supports multiple-term phrases. Regardless of how many terms are
used for a phrase, the slop factor is the maximum total number of moves allowed
to put the terms in order. Let’s look at an example of a multiple-term phrase query:

public void testMultiple() throws Exception {
 assertFalse("not close enough",
 matched(new String[] {"quick", "jumped", "lazy"}, 3));

Figure 3.2 Illustrating PhraseQuery slop factor: “quick fox”
requires a slop of 1 to match, whereas “fox quick” requires
a slop of 3 to match.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

90 CHAPTER 3
Adding search to your application
 assertTrue("just enough",
 matched(new String[] {"quick", "jumped", "lazy"}, 4));

 assertFalse("almost but not quite",
 matched(new String[] {"lazy", "jumped", "quick"}, 7));

 assertTrue("bingo",
 matched(new String[] {"lazy", "jumped", "quick"}, 8));
}

Now that you’ve seen how phrase queries match, we turn our attention to how
phrase queries affect the score.

Phrase query scoring
Phrase queries are scored based on the edit distance needed to
match the phrase. More exact matches count for more weight
than sloppier ones. The phrase query factor is shown in figure 3.3.
The inverse relationship with distance ensures that greater dis-
tances have lower scores.

NOTE Terms surrounded by double quotes in QueryParser parsed expres-
sions are translated into a PhraseQuery. The slop factor defaults to ze-
ro, but you can adjust the slop factor by adding a tilde (~) followed by an
integer. For example, the expression "quick fox"~3 is a PhraseQuery
with the terms quick and fox and a slop factor of 3. There are additional
details about PhraseQuery and the slop factor in section 3.5.6. Phrases
are analyzed by the analyzer passed to the QueryParser, adding anoth-
er layer of complexity, as discussed in section 4.1.2.

3.4.6 Searching by wildcard: WildcardQuery

Wildcard queries let you query for terms with missing pieces but still find
matches. Two standard wildcard characters are used: * for zero or more characters,
and ? for zero or one character. Listing 3.2 demonstrates WildcardQuery in action.

private void indexSingleFieldDocs(Field[] fields) throws Exception {
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(), true);
 for (int i = 0; i < fields.length; i++) {
 Document doc = new Document();
 doc.add(fields[i]);
 writer.addDocument(doc);
 }

Figure 3.3
Sloppy phrase
scoring

Listing 3.2 Searching on the wild(card) side
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating queries programmatically 91
 writer.optimize();
 writer.close();
}

public void testWildcard() throws Exception {
 indexSingleFieldDocs(new Field[]
 { Field.Text("contents", "wild"),
 Field.Text("contents", "child"),
 Field.Text("contents", "mild"),
 Field.Text("contents", "mildew") });

 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = new WildcardQuery(
 new Term("contents", "?ild*"));
 Hits hits = searcher.search(query);
 assertEquals("child no match", 3, hits.length());

 assertEquals("score the same", hits.score(0),
 hits.score(1), 0.0);
 assertEquals("score the same", hits.score(1),
 hits.score(2), 0.0);
}

Note how the wildcard pattern is created as a Term (the pattern to match) even
though it isn’t explicitly used as an exact term under the covers. Internally, it’s
used as a pattern to match terms in the index. A Term instance is a convenient
placeholder to represent a field name and a string.

WARNING Performance degradations can occur when you use WildcardQuery. A
larger prefix (characters before the first wildcard character) decreases
the terms enumerated to find matches. Beginning a pattern with a wild-
card query forces the term enumeration to search all terms in the index
for matches.

Oddly, the closeness of a wildcard match has no affect on scoring. The last two
assertions in listing 3.2, where wild and mild are closer matches to the pattern
than mildew, demonstrate this.

WildcardQuery and QueryParser
QueryParser supports WildcardQuery using the same syntax for a term as used by
the API. There are a few important differences, though. With QueryParser, the
first character of a wildcarded term may not be a wildcard character; this restric-
tion prevents users from putting asterisk-prefixed terms into a search expression,

Construct
WildcardQuery
using Term
Licensed to Jason Ruesch <krhonos713@hotmail.com>

92 CHAPTER 3
Adding search to your application
incurring an expensive operation of enumerating all the terms. Also, if the only
wildcard character in the term is a trailing asterisk, the query is optimized to a
PrefixQuery. Wildcard terms are lowercased automatically by default, but this
can be changed. See section 3.5.7 for more on wildcard queries and QueryParser.

3.4.7 Searching for similar terms: FuzzyQuery

The final built-in query is one of the more interesting. Lucene’s FuzzyQuery
matches terms similar to a specified term. The Levenshtein distance algorithm
determines how similar terms in the index are to a specified target term.5 Edit dis-
tance is another term for Levenshtein distance; it’s a measure of similarity
between two strings, where distance is measured as the number of character dele-
tions, insertions, or substitutions required to transform one string to the other
string. For example, the edit distance between three and tree is 1, because only one
character deletion is needed.

 Levenshtein distance isn’t the same as the distance calculation used in
PhraseQuery and PhrasePrefixQuery. The phrase query distance is the number of
term moves to match, whereas Levenshtein distance is an intraterm computation
of character moves. The FuzzyQuery test demonstrates its usage and behavior:

public void testFuzzy() throws Exception {
 indexSingleFieldDocs(new Field[] {
 Field.Text("contents", "fuzzy"),
 Field.Text("contents", "wuzzy")
 });

 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = new FuzzyQuery(new Term("contents", "wuzza"));
 Hits hits = searcher.search(query);
 assertEquals("both close enough", 2, hits.length());

 assertTrue("wuzzy closer than fuzzy",
 hits.score(0) != hits.score(1));

 assertEquals("wuzza bear",
 "wuzzy", hits.doc(0).get("contents"));
}

This test illustrates a couple of key points. Both documents match; the term
searched for (wuzza) wasn’t indexed but was close enough to match. FuzzyQuery
uses a threshold rather than a pure edit distance. The threshold is a factor of the
edit distance divided by the string length.

5 See http://www.merriampark.com/ld.htm for more information about Levenshtein distance.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Parsing query expressions: QueryParser 93
Edit distance affects scoring, such that terms with less edit distance are scored
higher. Distance is computed using the formula shown in figure 3.4.

WARNING FuzzyQuery enumerates all terms in an index to find terms within the
allowable threshold. Use this type of query sparingly, or at least with the
knowledge of how it works and the effect it may have on performance.

FuzzyQuery and QueryParser
QueryParser supports FuzzyQuery by suffixing a term with a tilde (~). For example,
the FuzzyQuery from the previous example would be wuzza~ in a query expression.
Note that the tilde is also used to specify sloppy phrase queries, but the context is
different. Double quotes denote a phrase query and aren’t used for fuzzy queries.

3.5 Parsing query expressions: QueryParser

Although API-created queries can be powerful, it isn’t reasonable that all queries
should be explicitly written in Java code. Using a human-readable textual query
representation, Lucene’s QueryParser constructs one of the previously mentioned
Query subclasses. This constructed Query instance could be a complex entity, con-
sisting of nested BooleanQuerys and a combination of almost all the Query types
mentioned, but an expression entered by the user could be as readable as this:

+pubdate:[20040101 TO 20041231] Java AND (Jakarta OR Apache)

This query searches for all books about Java that also include Jakarta or Apache in
their contents and were published in 2004.

NOTE Whenever special characters are used in a query expression, you need to
provide an escaping mechanism so that the special characters can be
used in a normal fashion. QueryParser uses a backslash (\) to escape
special characters within terms. The escapable characters are as follows:

\ + - ! () : ^] { } ~ * ?

The following sections detail the expression syntax, examples of using Query-
Parser, and customizing QueryParser’s behavior. The discussion of QueryParser in
this section assumes knowledge of the query types previously discussed in section 3.4.
We begin with a handy way to glimpse what QueryParser does to expressions.

Figure 3.4
FuzzyQuery distance formula.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

94 CHAPTER 3
Adding search to your application
3.5.1 Query.toString

Seemingly strange things can happen to a query expression as it’s parsed with
QueryParser. How can you tell what really happened to your expression? Was it
translated properly into what you intended? One way to peek at a resultant Query
instance is to use the toString() method.

 All concrete core Query classes we’ve discussed in this chapter have a special
toString() implementation. They output valid QueryParser parsable strings.
The standard Object.toString() method is overridden and delegates to a
toString(String field)() method, where field is the name of the default field.
Calling the no-arg toString() method uses an empty default field name, causing
the output to explicitly use field selector notation for all terms. Here’s an exam-
ple of using the toString() method:

public void testToString() throws Exception {
 BooleanQuery query = new BooleanQuery();
 query.add(
 new FuzzyQuery(new Term("field", "kountry6")), true, false);
 query.add(
 new TermQuery(new Term("title", "western")), false, false);

 assertEquals("both kinds",
 "+kountry~ title:western",
 query.toString("field"));
}

The toString() methods (particularly the String-arg one) are handy for visual
debugging of complex API queries as well as getting a handle on how Query-
Parser interprets query expressions. Don’t rely on the ability to go back and
forth accurately between a Query.toString() representation and a QueryParser-
parsed expression, though. It’s generally accurate, but an analyzer is involved
and may confuse things; this issue is discussed further in section 4.1.2.

3.5.2 Boolean operators

Constructing Boolean queries textually via QueryParser is done using the opera-
tors AND, OR, and NOT. Terms listed without an operator specified use an
implicit operator, which by default is OR. The query abc xyz will be interpreted
as either abc OR xyz or abc AND xyz, based on the implicit operator setting. To
switch parsing to use AND, use an instance of QueryParser rather than the static
parse method:

6 Misspelled on purpose to illustrate FuzzyQuery.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Parsing query expressions: QueryParser 95
QueryParser parser = new QueryParser("contents", analyzer);
parser.setOperator(QueryParser.DEFAULT_OPERATOR_AND);

Placing a NOT in front of a term excludes documents matching the following
term. Negating a term must be combined with at least one nonnegated term to
return documents; in other words, it isn’t possible to use a query like NOT term to
find all documents that don’t contain a term. Each of the uppercase word opera-
tors has shortcut syntax; table 3.7 illustrates various syntax equivalents.

3.5.3 Grouping

Lucene’s BooleanQuery lets you construct complex nested clauses; likewise, Query-
Parser enables it with query expressions. Let’s find all the methodology books
that are either about agile or extreme methodologies. We use parentheses to form
subqueries, enabling advanced construction of BooleanQuerys:

public void testGrouping() throws Exception {
 Query query = QueryParser.parse(
 "(agile OR extreme) AND methodology",
 "subject",
 analyzer);
 Hits hits = searcher.search(query);

 assertHitsIncludeTitle(hits, "Extreme Programming Explained");
 assertHitsIncludeTitle(hits, "The Pragmatic Programmer");
}

Next, we discuss how a specific field can be selected. Notice that field selection
can also leverage parentheses.

3.5.4 Field selection

QueryParser needs to know the field name to use when constructing queries, but
it would generally be unfriendly to require users to identify the field to search (the
end user may not need or want to know the field names). As you’ve seen, the default
field name is provided to the parse method. Parsed queries aren’t restricted, how-
ever, to searching only the default field. Using field selector notation, you can

Table 3.7 Boolean query operator shortcuts

Verbose syntax Shortcut syntax

a AND b +a +b

a OR b a b

a AND NOT b +a –b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

96 CHAPTER 3
Adding search to your application
specify terms in nondefault fields. For example, when HTML documents are
indexed with the title and body areas as separate fields, the default field will likely
be body. Users can search for title fields using a query such as title:lucene. You
can group field selection over several terms using field:(a b c).

3.5.5 Range searches

Text or date range queries use bracketed syntax, with TO between the beginning
term and ending term. The type of bracket determines whether the range is
inclusive (square brackets) or exclusive (curly brackets). Our testRangeQuery()
method demonstrates both inclusive and exclusive range queries:

public void testRangeQuery() throws Exception {
 Query query = QueryParser.parse(
 "pubmonth:[200401 TO 200412]", "subject", analyzer);

 assertTrue(query instanceof RangeQuery);

 Hits hits = searcher.search(query);
 assertHitsIncludeTitle(hits, "Lucene in Action");

 query = QueryParser.parse(
 "{200201 TO 200208}", "pubmonth", analyzer);

 hits = searcher.search(query);
 assertEquals("JDwA in 200208", 0, hits.length());
}

This inclusive range uses a field selector since the default field is subject.
This exclusive range uses the default field pubmonth.
Java Development with Ant was published in August 2002, so we’ve demonstrated
that the pubmonth value 200208 is excluded from the range.

NOTE Nondate range queries use the beginning and ending terms as the user
entered them, without modification. In other words, the beginning and
ending terms are not analyzed. Start and end terms must not contain
whitespace, or parsing fails. In our example index, the field pubmonth
isn’t a date field; it’s text of the format YYYYMM.

Handling date ranges
When a range query is encountered, the parser code first attempts to convert the
start and end terms to dates. If the terms are valid dates, according to DateFormat.
SHORT and lenient parsing within the default or specified locale, then the dates are
converted to their internal textual representation (see section 2.4 on DateField).

Inclusive
range

 b

Exclusive
range

 c

Demonstrates
exclusion of
pubmonth 200208

 d

 b
 c
 d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Parsing query expressions: QueryParser 97
If either of the two terms fails to parse as a valid date, they’re both used as is for
a textual range.

 The Query’s toString() output is interesting for date-range queries. Let’s
parse one to see:

Query query = QueryParser.parse("modified:[1/1/04 TO 12/31/04]",
 "subject", analyzer);
System.out.println(query);

This outputs something strange:

modified:[0dowcq3k0 TO 0e3dwg0w0]

Internally, all terms are text to Lucene, and dates are represented in a lexico-
graphically ordered text format. As long as our modified field was indexed prop-
erly as a Date, all is well despite this odd-looking output.

Controlling the date-parsing locale
To change the locale used for date parsing, construct a QueryParser instance and
call setLocale(). Typically the client’s locale would be determined and used,
rather than the default locale. For example, in a web application, the HttpServlet-
Request object contains the locale set by the client browser. You can use this locale
to control the locale used by date parsing in QueryParser, as shown in listing 3.3.

public class SearchServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 QueryParser parser = new QueryParser("contents",
 new StandardAnalyzer());

 parser.setLocale(request.getLocale());

 try {
 Query query = parser.parse(request.getParameter("q"));
 } catch (ParseException e) {
 // ... handle exception
 }

 // ... display results ...
 }
}

Listing 3.3 Using the client locale in a web application
Licensed to Jason Ruesch <krhonos713@hotmail.com>

98 CHAPTER 3
Adding search to your application
QueryParser’s setLocale is one way in which Lucene facilitates internationaliza-
tion (often abbreviated I18N) concerns. Text analysis is another, more impor-
tant, place where such concerns are handled. Further I18N issues are discussed
in section 4.8.2.

3.5.6 Phrase queries

Terms enclosed in double quotes create a PhraseQuery. The text between the
quotes is analyzed; thus the resultant PhraseQuery may not be exactly the phrase
originally specified. This process has been the subject of some confusion. For
example, the query "This is Some Phrase*", when analyzed by the Standard-
Analyzer, parses to a PhraseQuery using the phrase “some phrase”. The Stan-
dardAnalyzer removes the words this and is because they match the default stop
word list (more in section 4.3.2 on StandardAnalyzer). A common question is
why the asterisk isn’t interpreted as a wildcard query. Keep in mind that sur-
rounding text with double quotes causes the surrounded text to be analyzed and
converted into a PhraseQuery. Single-term phrases are optimized to a TermQuery.
The following code demonstrates both the effect of analysis on a phrase query
expression and the TermQuery optimization:

public void testPhraseQuery() throws Exception {
 Query q = QueryParser.parse("\"This is Some Phrase*\"",
 "field", new StandardAnalyzer());
 assertEquals("analyzed",
 "\"some phrase\"", q.toString("field"));

 q = QueryParser.parse("\"term\"", "field", analyzer);
 assertTrue("reduced to TermQuery", q instanceof TermQuery);
}

The slop factor is zero unless you specify it using a trailing tilde (~) and the
desired integer slop value. Because the implicit analysis of phrases may not
match what was indexed, the slop factor can be set to something other than zero
automatically if it isn’t specified using the tilde notation:

public void testSlop() throws Exception {
 Query q = QueryParser.parse(
 "\"exact phrase\"", "field", analyzer);
 assertEquals("zero slop",
 "\"exact phrase\"", q.toString("field"));

 QueryParser qp = new QueryParser("field", analyzer);
 qp.setPhraseSlop(5);
 q = qp.parse("\"sloppy phrase\"");
 assertEquals("sloppy, implicitly",
 "\"sloppy phrase\"~5", q.toString("field"));
}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Parsing query expressions: QueryParser 99
A sloppy PhraseQuery, as noted, doesn’t require that the terms match in the same
order. However, a SpanNearQuery (discussed in section 5.4.3) has the ability to
guarantee an in-order match. In section 6.3.4, we extend QueryParser and sub-
stitute a SpanNearQuery when phrase queries are parsed, allowing for sloppy in-
order phrase matches.

3.5.7 Wildcard and prefix queries

If a term contains an asterisk or a question mark, it’s considered a Wildcard-
Query. When the term only contains a trailing asterisk, QueryParser optimizes it
to a PrefixQuery instead. Both prefix and wildcard queries are lowercased by
default, but this behavior can be controlled:

public void testLowercasing() throws Exception {
 Query q = QueryParser.parse("PrefixQuery*", "field",
 analyzer);
 assertEquals("lowercased",
 "prefixquery*", q.toString("field"));

 QueryParser qp = new QueryParser("field", analyzer);
 qp.setLowercaseWildcardTerms(false);
 q = qp.parse("PrefixQuery*");
 assertEquals("not lowercased",
 "PrefixQuery*", q.toString("field"));
}

To turn off the automatic lowercasing, you must construct your own instance of
QueryParser rather than use the static parse method.

 Wildcards at the beginning of a term are prohibited using QueryParser, but
an API-coded WildcardQuery may use leading wildcards (at the expense of per-
formance). Section 3.4.6 discusses more about the performance issue, and sec-
tion 6.3.1 provides a way to prohibit WildcardQuerys from parsed expressions if
you wish.

3.5.8 Fuzzy queries

A trailing tilde (~) creates a fuzzy query on the preceding term. The same perfor-
mance caveats the apply to WildcardQuery also apply to fuzzy queries and can be
disabled with a customization similar to that discussed in section 6.3.1.

3.5.9 Boosting queries

A carat (^) followed by a floating-point number sets the boost factor for the pre-
ceding query. Section 3.3 discusses boosting queries in more detail. For example,
the query expression junit^2.0 testing sets the junit TermQuery to a boost of 2.0
Licensed to Jason Ruesch <krhonos713@hotmail.com>

100 CHAPTER 3
Adding search to your application
and leaves the testing TermQuery at the default boost of 1.0. You can apply a
boost to any type of query, including parenthetical groups.

3.5.10 To QueryParse or not to QueryParse?

QueryParser is a quick and effortless way to give users powerful query construc-
tion, but it isn’t right for all scenarios. QueryParser can’t create every type of
query that can be constructed using the API. In chapter 5, we detail a handful of
API-only queries that have no QueryParser expression capability. You must keep
in mind all the possibilities available when exposing free-form query parsing to
an end user; some queries have the potential for performance bottlenecks, and
the syntax used by the built-in QueryParser may not be suitable for your needs.
You can exert some limited control by subclassing QueryParser (see section 6.3.1).

 Should you require different expression syntax or capabilities beyond what
QueryParser offers, technologies such as ANTLR7 and JavaCC8 are great options.
We don’t discuss the creation of a custom query parser; however, the source code
for Lucene’s QueryParser is freely available for you to borrow from.

 You can often obtain a happy medium by combining a QueryParser-parsed
query with API-created queries as clauses in a BooleanQuery. This approach is
demonstrated in section 5.5.4. For example, if users need to constrain searches
to a particular category or narrow them to a date range, you can have the user
interface separate those selections into a category chooser or separate date-
range fields.

3.6 Summary

Lucene rapidly provides highly relevant search results to queries. Most applica-
tions need only a few Lucene classes and methods to enable searching. The most
fundamental things for you to take from this chapter are an understanding of
the basic query types (of which TermQuery, RangeQuery, and BooleanQuery are the
primary ones) and how to access search results.

 Although it can be a bit daunting, Lucene’s scoring formula (coupled with the
index format discussed in appendix B and the efficient algorithms) provides the
magic of returning the most relevant documents first. Lucene’s QueryParser
parses human-readable query expressions, giving rich full-text search power to
end users. QueryParser immediately satisfies most application requirements;

7 http://www.antlr.org.
8 http://javacc.dev.java.net.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 101
however, it doesn’t come without caveats, so be sure you understand the rough
edges. Much of the confusion regarding QueryParser stems from unexpected
analysis interactions; chapter 4 goes into great detail about analysis, including
more on the QueryParser issues.

 And yes, there is more to searching than we’ve covered in this chapter, but
understanding the groundwork is crucial. Chapter 5 delves into Lucene’s more
elaborate features, such as constraining (or filtering) the search space of que-
ries and sorting search results by field values; chapter 6 explores the numerous
ways you can extend Lucene’s searching capabilities for custom sorting and
query parsing.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analysis

This chapter covers
■ Understanding the analysis process
■ Exploring QueryParser issues
■ Writing custom analyzers
■ Handling foreign languages
102

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analysis 103
Analysis, in Lucene, is the process of converting field text into its most fundamen-
tal indexed representation, terms. These terms are used to determine what docu-
ments match a query during searches. For example, if this sentence were indexed
into a field (let’s assume type Field.Text), the terms might start with for and
example, and so on, as separate terms in sequence. An analyzer is an encapsula-
tion of the analysis process. An analyzer tokenizes text by performing any num-
ber of operations on it, which could include extracting words, discarding
punctuation, removing accents from characters, lowercasing (also called normal-
izing), removing common words, reducing words to a root form (stemming), or
changing words into the basic form (lemmatization). This process is also called
tokenization, and the chunks of text pulled from a stream of text are called tokens.
Tokens, combined with their associated field name, are terms.

 Lucene’s primary goal is to facilitate information retrieval. The emphasis on
retrieval is important. You want to throw gobs of text at Lucene and have them
be richly searchable by the individual words within that text. In order for Lucene
to know what “words” are, it analyzes the text during indexing, extracting it into
terms. These terms are the primitive building blocks for searching.

 Choosing the right analyzer is a crucial development decision with Lucene.
One size doesn’t fit all when it comes to choosing an analyzer. Language is one
factor in choosing an analyzer, because each has its own unique features. Another
factor to consider in choosing an analyzer is the domain of the text being ana-
lyzed; different industries have different terminology, acronyms, and abbrevia-
tions that may deserve attention. Although we present many of the considerations
for choosing analyzers, no single analyzer will suffice for all situations. It’s possi-
ble that none of the built-in analysis options are adequate for your needs, and
you’ll need to invest in creating a custom analysis solution; pleasantly, Lucene’s
building blocks make this quite easy.

 One of the best questions you can ask as you contemplate the analysis process
is, “What would Google do?” Google’s actual algorithms are proprietary and
kept relatively secret, but the results from searches give some insight. Searching
for the phrase “to be or not to be” with and without the quotes is a fun experi-
ment. Without the quotes, the only word Google considers (at the time of writ-
ing) is, surprisingly, not;1 it throws away the others as being too common.
However, Google doesn’t throw away these stop words during indexing, as you can

1 Interestingly, the first result (at the time of writing) for “to be or not to be” (without quotes) at Google
is the site “Am I Hot or Not?”—seriously!
Licensed to Jason Ruesch <krhonos713@hotmail.com>

104 CHAPTER 4
Analysis
see by searching for the phrase with quotes. This is an interesting phenomenon:
An astounding number of stop words are being indexed! How does Google
accomplish the indexing of every word of every web page on the Internet without
running out of storage? A Lucene-based analyzer exists that provides a solution
to this issue, as we’ll discuss.

 In this chapter, we’ll cover all aspects of the Lucene analysis process, includ-
ing how and where to use analyzers, what the built-in analyzers do, and how to
write your own custom analyzers using the building blocks provided by the core
Lucene API.

4.1 Using analyzers

Before we get into the gory details of what lurks inside an analyzer, let’s look at
how an analyzer is used within Lucene. Analysis occurs at two spots: during
indexing and when using QueryParser. In the following two sections, we detail
how an analyzer is used in these scenarios.

 Before we begin with any code details, look at listing 4.1 to get a feel for what
the analysis process is all about. Two phrases are analyzed, each by four of the
built-in analyzers. The phrases are “The quick brown fox jumped over the lazy
dogs” and “XY&Z Corporation - xyz@example.com”. Each token is shown
between square brackets to make the separations apparent. During indexing, the
tokens extracted during analysis are the terms indexed. And, most important, the
terms indexed are the terms that are searchable!

Analyzing "The quick brown fox jumped over the lazy dogs"
 WhitespaceAnalyzer:
 [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

 SimpleAnalyzer:
 [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

 StopAnalyzer:
 [quick] [brown] [fox] [jumped] [over] [lazy] [dogs]

 StandardAnalyzer:
 [quick] [brown] [fox] [jumped] [over] [lazy] [dogs]

Analyzing "XY&Z Corporation - xyz@example.com"
 WhitespaceAnalyzer:
 [XY&Z] [Corporation] [-] [xyz@example.com]

Listing 4.1 Visualizing analyzer effects
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using analyzers 105
 SimpleAnalyzer:
 [xy] [z] [corporation] [xyz] [example] [com]

 StopAnalyzer:
 [xy] [z] [corporation] [xyz] [example] [com]

 StandardAnalyzer:
 [xy&z] [corporation] [xyz@example.com]

The code that generated this analyzer output is shown later, in listing 4.2. A few
interesting things happen in this example. Look at how the word the is treated,
and likewise the company name XY&Z and the e-mail address xyz@example.com;
look at the special hyphen character (-) and the case of each token. Section 4.2.3
explains more of the details of what happened.

 Lucene doesn’t make the results of the analysis process visible to the end user.
Terms pulled from the original text are indexed and are matched during search-
ing. When searching with QueryParser, the analysis process happens again in
order to ensure the best possible matches.

4.1.1 Indexing analysis

During indexing, an Analyzer instance is handed to the IndexWriter in this manner:

Analyzer analyzer = new StandardAnalyzer();
IndexWriter writer = new IndexWriter(directory, analyzer, true);

In this example, we use the built-in StandardAnalyzer, one of the several available
within the core Lucene library. Each tokenized field of each document indexed
with the IndexWriter instance uses the analyzer specified. Two special Field types
are designated to be tokenized: Text and UnStored.

NOTE Field.Text(String, String) creates a tokenized and stored field.
Rest assured the original String value is stored. However, the output of
the designated Analyzer dictates what is indexed.

The following code demonstrates indexing of a document with these two field types:

Document doc = new Document();
doc.add(Field.Text("title", "This is the title"));
doc.add(Field.UnStored("contents", "...document contents..."));
writer.addDocument(doc);
Licensed to Jason Ruesch <krhonos713@hotmail.com>

106 CHAPTER 4
Analysis
Both "title" and "contents" are analyzed using the Analyzer instance provided
to the IndexWriter. However, if an individual document has special analysis
needs, the analyzer may be specified on a per-document basis, like this:

writer.addDocument(doc, analyzer);

During indexing, the granularity of analyzer choice is at the IndexWriter or per-
Document level. It would seem that each field may deserve unique analysis and
that even this per-Document analysis is too course grained. Analyzers have access
to the field name being analyzed, so finer-grained, field-specific analysis is possi-
ble; we discuss per-field analysis in section 4.4.

 Field.Keyword indexed fields aren’t tokenized. A Field.Keyword field is indexed
as a single term with the value exactly as provided. Once indexed, though, there
is no difference in a term from Field.Keyword and a term created from an ana-
lyzer; both are terms with no knowledge of how they were indexed. This can lead
to troublesome behavior when you’re using QueryParser, as we mention again in
the next section.

4.1.2 QueryParser analysis

The Analyzer is the key to the terms indexed. As you saw in chapter 3, you need
to be sure to query on the exact terms indexed in order to find documents (we
covered QueryParser expression parsing and usage details in sections 3.1.2 and
3.5). When you’re using API-created queries such as TermQuery, it’s the devel-
oper’s responsibility to ensure that the terms used will match what was indexed.

 Presenting users with a free-form option of querying is often what you’re asked
to implement, and QueryParser comes in handy for processing user-entered
query expressions. QueryParser uses an analyzer to do its best job to match the
terms that were indexed. An analyzer is specified on the static parse method:

Query query = QueryParser.parse(expression, "contents", analyzer);

Or, if you’re using a QueryParser instance, the analyzer is specified on the con-
structor:

QueryParser parser = new QueryParser("contents", analyzer);
query = parser.parse(expression);

QueryParser analyzes individual pieces of the expression, not the expression as a
whole, which may include operators, parenthesis, and other special expression
syntax to denote range, wildcard, and fuzzy searches.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 107
 QueryParser analyzes all text equally, without knowledge of how it was
indexed. This is a particularly thorny issue when you’re querying for fields that
were indexed as Field.Keyword. We address this situation in section 4.4.

 Should you use the same analyzer with QueryParser that you used during
indexing? The short, most accurate, answer is, “it depends.” If you stick with the
basic built-in analyzers, then you’ll probably be fine using the same analyzer in
both situations. However, when you’re using more sophisticated analyzers, quirky
cases can come up in which using different analyzers between indexing and Query-
Parser is best. We discuss this issue in more detail in section 4.6.

4.1.3 Parsing versus analysis: when an analyzer isn’t appropriate

An important point about analyzers is that they’re used internally for fields
flagged to be tokenized. Documents such as HTML, Microsoft Word, XML, and
others, contain meta-data such as author, title, last modified date, and poten-
tially much more. When you’re indexing rich documents, this meta-data should
be separated and indexed as separate fields. Analyzers are used to analyze a spe-
cific field at a time and break things into tokens only within that field; creating
new fields isn’t possible within an analyzer.

 Analyzers don’t help in field separation because their scope is to deal with a
single field at a time. Instead, parsing these documents prior to analysis is
required. For example, it’s a common practice to separate at least the <title> and
<body> of HTML documents into separate fields. In these cases, the documents
should be parsed, or preprocessed, into separate blocks of text representing each
field. Chapter 7 covers several specific document types and provides options for
indexing them; it also discusses parsing various document types in detail.

4.2 Analyzing the analyzer

In order to fully appreciate and understand how Lucene’s textual analysis works,
we need to open the hood and tinker around a bit. Because it’s possible that
you’ll be constructing your own analyzers, knowing the architecture and building
blocks provided is crucial.

 The Analyzer class is the base class. Quite elegantly, it turns text into a stream
of tokens, literally a TokenStream. The single required method signature imple-
mented by analyzers is

public TokenStream tokenStream(String fieldName, Reader reader)
Licensed to Jason Ruesch <krhonos713@hotmail.com>

108 CHAPTER 4
Analysis
Notice that an analyzer can be used to key off the field name. Because field names
are arbitrary and application dependent, all the built-in analyzers ignore the field
name. Custom analyzers are free to utilize the field name or, more easily, to use
the special PerFieldAnalyzerWrapper that delegates the analysis for each field to
analyzers you associate with field names (detailed coverage is in section 4.4).

 Let’s start “simply” with the SimpleAnalyzer and see what makes it tick. The
following code is copied directly from Lucene’s codebase:

public final class SimpleAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new LowerCaseTokenizer(reader);
 }
}

The LowerCaseTokenizer divides text at nonletters (determined by Character.
isLetter), removing nonletter characters and, true to its name, lowercasing each
character. A TokenStream is an enumerator-like class that returns successive Tokens,
returning null when the end has been reached (see listing 4.3, where Analyzer-
Utils enumerates the tokens returned).

 In the following sections, we take a detailed look at each of the major players
used by analyzers, including Token and the TokenStream family.

4.2.1 What’s in a token?

A stream of tokens is the fundamental output of the analysis process. During
indexing, fields designated for tokenization are processed with the specified ana-
lyzer, and each token is written to the index as a term. This distinction between
tokens and terms may seem confusing at first. Let’s see what forms a Token; we’ll
come back to how that translates into a term.

 For example, let’s analyze the text “the quick brown fox”. Each token repre-
sents an individual word of that text. A token carries with it a text value (the word
itself) as well as some meta-data: the start and end offsets in the original text, a
token type, and a position increment. Figure 4.1 shows the details of the token
stream analyzing this phrase with the SimpleAnalyzer.

Figure 4.1
Token stream with positional
and offset information
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 109
The start offset is the character position in the original text where the token text
begins, and the end offset is the position just after the last character of the token
text. The token type is a String, defaulting to "word", that you can control and
use in the token-filtering process if desired. As text is tokenized, the position rel-
ative to the previous token is recorded as the position increment value. All the
built-in tokenizers leave the position increment at the default value of 1, indicat-
ing that all tokens are in successive positions, one after the other.

Tokens into terms
After text is analyzed during indexing, each token is posted to the index as a
term. The position increment is the only additional meta-data associated with the
token carried through to the index. Start and end offset as well as token type are
discarded—these are only used during the analysis process.

Position increments
The token position increment value relates the current token to the previous one.
Generally, position increments are 1, indicating that each word is in a unique and
successive position in the field. Position increments factor directly into perform-
ing phrase queries (see section 3.4.5) and span queries (see section 5.4), which
rely on knowing how far terms are from one another within a field.

 Position increments greater than 1 allow for gaps and can be used to indicate
where words have been removed. See section 4.7.1 for an example of stop-word
removal that leaves gaps using position increments.

 A token with a zero position increment places the token in the same position
as the previous token. Analyzers that inject word aliases can use a position incre-
ment of zero for the aliases. The effect is that phrase queries work regardless of
which alias was used in the query. See our SynonymAnalyzer in section 4.6 for an
example that uses position increments of zero.

4.2.2 TokenStreams uncensored

There are two different styles of TokenStreams: Tokenizer and TokenFilter. A
good generalization to explain the distinction is that Tokenizers deal with indi-
vidual characters, and TokenFilters deal with words. Figure 4.2 shows this archi-
tecture graphically.

 A Tokenizer is a TokenStream that tokenizes the input from a Reader.
When you’re indexing a String through Field.Text(String, String) or Field.
UnStored(String, String) (that is, the indexed field constructors which accept
a String), Lucene wraps the String in a StringReader for tokenization.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

110 CHAPTER 4
Analysis
The second style of TokenStream, TokenFilter, lets you chain TokenStreams
together. This powerful mechanism lives up to its namesake as a stream filter. A
TokenStream is fed into a TokenFilter, giving the filter a chance to add, remove,
or change the stream as it passes through.

 Figure 4.3 shows the full TokenStream inheritance hierarchy within Lucene.
Note the composite pattern used by TokenFilter to encapsulate another Token-
Stream (which could, of course, be another TokenFilter). Table 4.1 provides
detailed descriptions for each of the classes shown in figure 4.3.

Table 4.1 Analyzer building blocks provided in Lucene’s core API

Class name Description

TokenStream Base class with next() and close() methods.

Tokenizer TokenStream whose input is a Reader.

CharTokenizer Parent class of character-based tokenizers, with abstract isTokenChar()
method. Emits tokens for contiguous blocks when isTokenChar == true.
Also provides the capability to normalize (for example, lowercase) characters.
Tokens are limited to a maximum size of 255 characters.

WhitespaceTokenizer CharTokenizer with isTokenChar() true for all nonwhitespace characters.

LetterTokenizer CharTokenizer with isTokenChar() true when Character.isLetter
is true.

LowerCaseTokenizer LetterTokenizer that normalizes all characters to lowercase.

StandardTokenizer Sophisticated grammar-based tokenizer, emitting tokens for high-level types like
e-mail addresses (see section 4.3.2 for more details). Each emitted token is
tagged with a special type, some of which are handled specially by
StandardFilter.

TokenFilter TokenStream whose input is another TokenStream.

LowerCaseFilter Lowercases token text.

continued on next page

Figure 4.2
TokenStream architecture:
TokenFilters filter a
TokenStream.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 111
Taking advantage of the TokenFilter chaining pattern, you can build complex
analyzers from simple Tokenizer/TokenFilter building blocks. Tokenizers start
the analysis process by churning the character input into tokens (mostly these cor-
respond to words in the original text). TokenFilters then take over the remain-
der of the analysis, initially wrapping a Tokenizer and successively wrapping
nested TokenFilters. To illustrate this in code, here is the heart of StopAnalyzer:

StopFilter Removes words that exist in a provided set of words.

PorterStemFilter Stems each token using the Porter stemming algorithm. For example, country and
countries both stem to countri.

StandardFilter Designed to be fed by a StandardTokenizer. Removes dots from acronyms
and ’s (apostrophe followed by S) from words with apostrophes.

Table 4.1 Analyzer building blocks provided in Lucene’s core API (continued)

Class name Description

Figure 4.3 TokenStream class hierarchy
Licensed to Jason Ruesch <krhonos713@hotmail.com>

112 CHAPTER 4
Analysis
public TokenStream tokenStream(String fieldName, Reader reader) {
 return new StopFilter(
 new LowerCaseTokenizer(reader),
 stopTable);
}

In StopAnalyzer, a LowerCaseTokenizer feeds a StopFilter. The LowerCaseToken-
izer emits tokens that are adjacent letters in the original text, lowercasing each
of the characters in the process. Nonletter characters form token boundaries and
aren’t included in any emitted token. Following this word tokenizer and lower-
caser, StopFilter removes words in a stop-word list (see section 4.3.1).

 Buffering is a feature that’s commonly needed in the TokenStream implemen-
tations. Low-level Tokenizers do this to buffer up characters to form tokens at
boundaries such as whitespace or nonletter characters. TokenFilters that emit
additional tokens into the stream they’re filtering must queue an incoming token
and the additional ones and emit them one at a time; our SynonymFilter in sec-
tion 4.6 is an example of a queuing filter.

4.2.3 Visualizing analyzers

It’s important to understand what various analyzers do with your text. Seeing the
effect of an analyzer is a powerful and immediate aid to this understanding. List-
ing 4.2 provides a quick and easy way to get visual feedback about the four pri-
mary built-in analyzers on a couple of text examples. AnalyzerDemo includes two
predefined phrases and an array of the four analyzers we’re focusing on in this
section. Each phrase is analyzed by all the analyzers, with bracketed output to
indicate the terms that would be indexed.

/**
 * Adapted from code which first appeared in a java.net article
 * written by Erik
 */
public class AnalyzerDemo {
 private static final String[] examples = {
 "The quick brown fox jumped over the lazy dogs",
 "XY&Z Corporation - xyz@example.com"
 };

 private static final Analyzer[] analyzers = new Analyzer[] {
 new WhitespaceAnalyzer(),
 new SimpleAnalyzer(),
 new StopAnalyzer(),
 new StandardAnalyzer()
 };

Listing 4.2 AnalyzerDemo: seeing analysis in action
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 113
 public static void main(String[] args) throws IOException {
 // Use the embedded example strings, unless
 // command line arguments are specified, then use those.
 String[] strings = examples;
 if (args.length > 0) {
 strings = args;
 }

 for (int i = 0; i < strings.length; i++) {
 analyze(strings[i]);
 }
 }

 private static void analyze(String text) throws IOException {
 System.out.println("Analyzing \"" + text + "\"");
 for (int i = 0; i < analyzers.length; i++) {
 Analyzer analyzer = analyzers[i];
 String name = analyzer.getClass().getName();
 name = name.substring(name.lastIndexOf(".") + 1);
 System.out.println(" " + name + ":");
 System.out.print(" ");
 AnalyzerUtils.displayTokens(analyzer, text);
 System.out.println("\n");
 }
 }
 }

The real fun happens in AnalyzerUtils (listing 4.3), where the analyzer is
applied to the text and the tokens are extracted. AnalyzerUtils passes text to an
analyzer without indexing it and pulls the results in a manner similar to what
happens during the indexing process under the covers of IndexWriter.

public class AnalyzerUtils {
 public static Token[] tokensFromAnalysis
 (Analyzer analyzer, String text) throws IOException {
 TokenStream stream =
 analyzer.tokenStream("contents", new StringReader(text));
 ArrayList tokenList = new ArrayList();
 while (true) {
 Token token = stream.next();
 if (token == null) break;

 tokenList.add(token);
 }

 return (Token[]) tokenList.toArray(new Token[0]);
 }

Listing 4.3 AnalyzerUtils: delving into an analyzer

Invoke analysis
process
Licensed to Jason Ruesch <krhonos713@hotmail.com>

114 CHAPTER 4
Analysis
 public static void displayTokens
 (Analyzer analyzer, String text) throws IOException {
 Token[] tokens = tokensFromAnalysis(analyzer, text);

 for (int i = 0; i < tokens.length; i++) {
 Token token = tokens[i];

 System.out.print("[" + token.termText() + "] ");
 }
 }

 // ... other methods introduced later ...

}

Generally you wouldn’t invoke the analyzer’s tokenStream method explicitly
except for this type of diagnostic or informational purpose (and the field name
contents is arbitrary in the tokensFromAnalysis() method). We do, however,
cover one production use of this method for query highlighting in section 8.7,
page 300.

 AnalyzerDemo produced the output shown in listing 4.1. Some key points to
note are as follows:

■ WhitespaceAnalyzer didn’t lowercase, left in the dash, and did the bare
minimum of tokenizing at whitespace boundaries.

■ SimpleAnalyzer left in what may be considered irrelevant (stop) words, but
it did lowercase and tokenize at nonalphabetic character boundaries.

■ Both SimpleAnalyzer and StopAnalyzer mangled the corporation name by
splitting XY&Z and removing the ampersand.

■ StopAnalyzer and StandardAnalyzer threw away occurrences of the word the.
■ StandardAnalyzer kept the corporation name intact and lowercased it,

removed the dash, and kept the e-mail address together. No other built-in
analyzer is this thorough.

We recommend keeping a utility like this handy to see what tokens emit from
your analyzers of choice. In fact, rather than write this yourself, you can use our
AnalyzerUtils or the AnalyzerDemo code for experimentation. The AnalyzerDemo
application lets you specify one or more strings from the command line to be
analyzed instead of the embedded example ones:

% java lia.analysis.AnalyzerDemo "No Fluff, Just Stuff"
Analyzing "No Fluff, Just Stuff"

Output tokens
surrounded by
brackets
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 115
 org.apache.lucene.analysis.WhitespaceAnalyzer:
 [No] [Fluff,] [Just] [Stuff]

 org.apache.lucene.analysis.SimpleAnalyzer:
 [no] [fluff] [just] [stuff]

 org.apache.lucene.analysis.StopAnalyzer:
 [fluff] [just] [stuff]

 org.apache.lucene.analysis.standard.StandardAnalyzer:
 [fluff] [just] [stuff]

Let’s now look deeper into what makes up a Token.

Looking inside tokens
TokenStreams can create Tokens, and TokenFilters may access their meta-data. To
demonstrate accessing token meta-data, we added the displayTokensWithFull-
Details utility method in AnalyzerUtils:

 public static void displayTokensWithFullDetails
 (Analyzer analyzer, String text) throws IOException {
 Token[] tokens = tokensFromAnalysis(analyzer, text);

 int position = 0;

 for (int i = 0; i < tokens.length; i++) {
 Token token = tokens[i];

 int increment = token.getPositionIncrement();

 if (increment > 0) {
 position = position + increment;
 System.out.println();
 System.out.print(position + ": ");
 }

 System.out.print("[" + token.termText() + ":" +
 token.startOffset() + "->" +
 token.endOffset() + ":" +
 token.type() + "] ");
 }
 }

We display all token information on the example phrase using SimpleAnalyzer:

 public static void main(String[] args) throws IOException {
 displayTokensWithFullDetails(new SimpleAnalyzer(),
 "The quick brown fox....");
 }

Here’s the output:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

116 CHAPTER 4
Analysis
1: [the:0->3:word]
2: [quick:4->9:word]
3: [brown:10->15:word]
4: [fox:16->19:word]

Each token is in a successive position relative to the previous one (noted by the
incrementing numbers 1, 2, 3, and 4). The word the begins at offset 0 and ends
before offset 3 in the original text. Each of the tokens has a type of word. We
present a similar, but simpler, visualization of token position increments in sec-
tion 4.6.1, and we provide a visualization of tokens sharing the same position.

What good are start and end offsets?
The start and end offset values aren’t used in the core of Lucene. Are they use-
less? Not entirely. The term highlighter discussed in section 8.7 uses a Token-
Stream and the resulting Tokens outside of indexing to determine where in a
block of text to begin and end highlighting, allowing words that users search for
to stand out in search results.

Token-type usefulness
You can use the token-type value to denote special lexical types for tokens.
Under the covers of StandardAnalyzer is a StandardTokenizer that parses the
incoming text into different types based on a grammar. Analyzing the phrase
“I’ll e-mail you at xyz@example.com” with StandardAnalyzer produces this
interesting output:

1: [i'll:0->4:<APOSTROPHE>]
2: [e:5->6:<ALPHANUM>]
3: [mail:7->11:<ALPHANUM>]
4: [you:12->15:<ALPHANUM>]
5: [xyz@example.com:19->34:<EMAIL>]

Notice the token type of each token. The token i'll has an apostrophe, which
StandardTokenizer notices in order to keep it together as a unit; and likewise for
the e-mail address. We cover the other StandardAnalyzer effects in section 4.3.2.
StandardAnalyzer is the only built-in analyzer that leverages the token-type data.
Our Metaphone and synonym analyzers, in sections 4.5 and 4.6, provide another
example of token type usage.

4.2.4 Filtering order can be important

The order of events can be critically important during analysis. Each step may
rely on the work of a previous step. A prime example is that of stop-word
removal. StopFilter does a case-sensitive look-up of each token in a set of stop
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzing the analyzer 117
words. It relies on being fed lowercased tokens. As an example, we first write a
functionally equivalent StopAnalyzer variant; we’ll follow it with a flawed variant
that reverses the order of the steps:

public class StopAnalyzer2 extends Analyzer {
 private Set stopWords;

 public StopAnalyzer2() {
 stopWords =
 StopFilter.makeStopSet(StopAnalyzer.ENGLISH_STOP_WORDS);
 }

 public StopAnalyzer2(String[] stopWords) {
 this.stopWords = StopFilter.makeStopSet(stopWords);
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new StopFilter(
 new LowerCaseFilter(new LetterTokenizer(reader)),
 stopWords);
 }
}

StopAnalyzer2 uses a LetterTokenizer feeding a LowerCaseFilter, rather than
just a LowerCaseTokenizer. A LowerCaseTokenizer, however, has a performance
advantage since it lowercases as it tokenizes, rather than dividing the process
into two steps. This test case proves that our StopAnalyzer2 works as expected, by
using AnalyzerUtils.tokensFromAnalysis and asserting that the stop word the
was removed:

public void testStopAnalyzer2() throws Exception {
 Token[] tokens =
 AnalyzerUtils.tokensFromAnalysis(
 new StopAnalyzer2(), "The quick brown...");

 assertTrue(
 AnalyzerUtils.tokensEqual(tokens,
 new String[] {"quick", "brown"}));
}

We’ve added a unit-test helper method to our AnalyzerUtils that asserts tokens
match an expected list:

 public static void assertTokensEqual(
 Token[] tokens, String[] strings) {
 Assert.assertEquals(strings.length, tokens.length);

 for (int i = 0; i < tokens.length; i++) {
 Assert.assertEquals("index " + i,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

118 CHAPTER 4
Analysis
 strings[i], tokens[i].termText());
 }
 }

To illustrate the importance that the order can make with token filtering, we’ve
written a flawed analyzer that swaps the order of the StopFilter and the Lower-
CaseFilter:

/**
 * Stop words not necessarily removed due to filtering order
 */
public class StopAnalyzerFlawed extends Analyzer {
 private Set stopWords;

 public StopAnalyzerFlawed() {
 stopWords =
 StopFilter.makeStopSet(StopAnalyzer.ENGLISH_STOP_WORDS);
 }

 public StopAnalyzerFlawed(String[] stopWords) {
 this.stopWords = StopFilter.makeStopSet(stopWords);
 }

 /**
 * Ordering mistake here
 */
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new LowerCaseFilter(
 new StopFilter(new LetterTokenizer(reader),
 stopWords));
 }
}

The StopFilter presumes all tokens have already been lowercased and does a
case-sensitive lookup. Another test case shows that The was not removed (it’s the
first token of the analyzer output), yet it was lowercased:

public void testStopAnalyzerFlawed() throws Exception {
 Token[] tokens =
 AnalyzerUtils.tokensFromAnalysis(
 new StopAnalyzerFlawed(), "The quick brown...");

 assertEquals("the", tokens[0].termText());
}

Lowercasing is just one example where order may matter. Filters may assume
previous processing was done. For example, the StandardFilter is designed to
be used in conjunction with StandardTokenizer and wouldn’t make sense with
any other TokenStream feeding it. There may also be performance considerations
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using the built-in analyzers 119
when you order the filtering process. Consider an analyzer that removes stop
words and also injects synonyms into the token stream—it would be more effi-
cient to remove the stop words first so that the synonym injection filter would
have fewer terms to consider (see section 4.6 for a detailed example).

4.3 Using the built-in analyzers

Lucene includes several built-in analyzers. The primary ones are shown in table 4.2.
We’ll leave discussion of the two language-specific analyzers, RussianAnalyzer
and GermanAnalyzer, to section 4.8.2 and the special per-field analyzer wrapper,
PerFieldAnalyzerWrapper, to section 4.4.

The built-in analyzers we discuss in this section—WhitespaceAnalyzer, Simple-
Analyzer, StopAnalyzer, and StandardAnalyzer—are designed to work with text in
almost any Western (European-based) language. You can see the effect of each of
these analyzers in the output in section 4.2.3. WhitespaceAnalyzer and Simple-
Analyzer are both trivial and we don’t cover them in more detail here. We explore
the StopAnalyzer and StandardAnalyzer in more depth because they have non-
trivial effects.

4.3.1 StopAnalyzer

StopAnalyzer, beyond doing basic word splitting and lowercasing, also removes
stop words. Embedded in StopAnalyzer is a list of common English stop words;
this list is used unless otherwise specified:

public static final String[] ENGLISH_STOP_WORDS = {
 "a", "an", "and", "are", "as", "at", "be", "but", "by",
 "for", "if", "in", "into", "is", "it",

Table 4.2 Primary analyzers available in Lucene

Analyzer Steps taken

WhitespaceAnalyzer Splits tokens at whitespace

SimpleAnalyzer Divides text at nonletter characters and lowercases

StopAnalyzer Divides text at nonletter characters, lowercases, and removes stop words

StandardAnalyzer Tokenizes based on a sophisticated grammar that recognizes e-mail
addresses, acronyms, Chinese-Japanese-Korean characters,
alphanumerics, and more; lowercases; and removes stop words
Licensed to Jason Ruesch <krhonos713@hotmail.com>

120 CHAPTER 4
Analysis
 "no", "not", "of", "on", "or", "s", "such",
 "t", "that", "the", "their", "then", "there", "these",
 "they", "this", "to", "was", "will", "with"
};

The StopAnalyzer has a second constructor that allows you to pass your own list
as a String[] instead. Of note are two items in the default list: "s" and "t". Con-
tractions are commonly used in English, such as don’t, can’t, and it’s. Prior to
removing stop words, the StopAnalyzer keeps successive characters together,
splitting at nonletter characters including the apostrophe and leaving the s and t
characters as standalone tokens; since these characters are meaningless on their
own, it makes sense to remove them.

 Stop-word removal brings up another interesting issue: What happened to
the holes left by the words removed? Suppose you index “one is not enough”.
The tokens emitted from StopAnalyzer will be one and enough, with is and not
thrown away. StopAnalyzer currently does no accounting for words removed, so
the result is exactly as if you indexed “one enough”. If you were to use Query-
Parser along with StopAnalyzer, this document would match phrase queries for
“one enough”, “one is enough”, “one but not enough”, and the original “one is
not enough”. Remember, QueryParser also analyzes phrases, and each of these
reduces to “one enough” and matches the terms indexed. There is a “hole” lot
more to this topic, which we cover in section 4.7.3 (after we provide more details
about token positions).

 Having the stop words removed presents an interesting semantic question.
Do you lose some potential meaning? The answer to this question is, “It
depends.” It depends on your use of Lucene and whether searching on these
words is meaningful to your application. We briefly revisit this somewhat rhetori-
cal question later, in section 4.7.3. To emphasize and reiterate an important
point, only the tokens emitted from the analyzer (or indexed as Field.Keyword)
are available for searching.

4.3.2 StandardAnalyzer

StandardAnalyzer holds the honor as the most generally useful built-in analyzer.
A JavaCC-based2 grammar underlies it, tokenizing with cleverness for the following
lexical types: alphanumerics, acronyms, company names, e-mail addresses, com-
puter host names, numbers, words with an interior apostrophe, serial numbers, IP
addresses, and CJK (Chinese Japanese Korean) characters. StandardAnalyzer also

2 Java Compiler-Compiler (JavaCC) is a sophisticated lexical parser. See http://javacc.dev.java.net.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Dealing with keyword fields 121
includes stop-word removal, using the same mechanism as the StopAnalyzer
(identical default English list, and an optional String[] constructor to override).
StandardAnalyzer makes a great first choice.

 Using StandardAnalyzer is no different than using any of the other analyzers,
as you can see from its use in section 4.1.1 and AnalyzerDemo (listing 4.2). Its
unique effect, though, is apparent in the different treatment of text. For exam-
ple, look at listing 4.1, and compare the different analyzers on the phrase “XY&Z
Corporation - xyz@example.com”. StandardAnalyzer is the only one that kept
XY&Z together as well as the e-mail address xyz@example.com; both of these
showcase the vastly more sophisticated analysis process.

4.4 Dealing with keyword fields

It’s easy to index a keyword using Field.Keyword, which is a single token added
to a field that bypasses tokenization and is indexed exactly as is as a single term.
It’s also straightforward to query for a term through TermQuery. A dilemma can
arise, however, if you expose QueryParser to users and attempt to query on
Field.Keyword-created fields. The “keyword”-ness of a field is only known during
indexing. There is nothing special about keyword fields once they’re indexed;
they’re just terms.

 Let’s see the issue exposed with a straightforward test case that indexes a doc-
ument with a keyword field and then attempts to find that document again:

public class KeywordAnalyzerTest extends TestCase {
 RAMDirectory directory;
 private IndexSearcher searcher;

 public void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory,
 new SimpleAnalyzer(),
 true);

 Document doc = new Document();
 doc.add(Field.Keyword("partnum", "Q36"));
 doc.add(Field.Text("description", "Illidium Space Modulator"));
 writer.addDocument(doc);

 writer.close();

 searcher = new IndexSearcher(directory);
 }

 public void testTermQuery() throws Exception {

Field not
analyzed
Licensed to Jason Ruesch <krhonos713@hotmail.com>

122 CHAPTER 4
Analysis
 Query query = new TermQuery(new Term("partnum", "Q36"));
 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 }
}

So far, so good—we’ve indexed a document and can retrieve it using a TermQuery.
But what happens if we generate a query using QueryParser?

 public void testBasicQueryParser() throws Exception {
 Query query = QueryParser.parse("partnum:Q36 AND SPACE",
 "description",
 new SimpleAnalyzer());

 Hits hits = searcher.search(query);
 assertEquals("note Q36 -> q",
 "+partnum:q +space", query.toString("description"));
 assertEquals("doc not found :(", 0, hits.length());
 }

QueryParser analyzes each term and phrase of the query expression. Both Q36
and SPACE are analyzed separately. SimpleAnalyzer strips nonletter characters
and lowercases, so Q36 becomes q. But at indexing time, Q36 was left as is.
Notice, also, that this is the same analyzer used during indexing.
Query has a nice toString() method (see section 3.5.1) to return the query as a
QueryParser-like expression. Notice that Q36 is gone.

This issue of QueryParser analyzing a keyword field emphasizes a key point: index-
ing and analysis are intimately tied to searching. The testBasicQueryParser test shows
that searching for terms created using Field.Keyword when a query expression is
analyzed can be problematic. It’s problematic because QueryParser analyzed the
partnum field, but it shouldn’t have. There are a few possible solutions to this type
of dilemma:

■ Separate your user interface such that a user selects a part number sepa-
rately from free-form queries. Generally, users don’t want to know (and
shouldn’t need to know) about the field names in the index.

■ Explore the use of field-specific analysis.
■ If part numbers or other textual constructs are common lexical occur-

rences in the text you’re analyzing, consider creating a custom domain-
specific analyzer that recognizes part numbers, and so on, and leaves them
as is.

■ Subclass QueryParser and override one or both of the getFieldQuery meth-
ods to provide field-specific handling.

No analysis
here

Document found
as expected

QueryParser
analyzes each
term and phrase

 b

toString()
method

 c

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Dealing with keyword fields 123
Designing a search user interface is very application dependent; BooleanQuery
(section 3.4.4) and filters (section 5.5) provide the support you need to combine
query pieces in sophisticated ways. Section 8.5 covers ways to use JavaScript in a
web browser for building queries. The information in this chapter provides the
foundation for building domain-centric analyzers. We’ll delve more deeply into
using field-specific analysis for the remainder of this section. We cover subclass-
ing QueryParser in section 6.3; however, there is no advantage to doing so in this
scenario over the PerFieldAnalyzerWrapper solution we present here.

 An IndexWriter only deals with an analyzer choice on a per-instance or per-
Document basis. Internally, though, analyzers can act on the field name being ana-
lyzed. The built-in analyzers don’t leverage this capability because they’re
designed for general-purpose use regardless of field name. When you’re con-
fronted with a situation requiring unique analysis for different fields, one option
is the PerFieldAnalyzerWrapper.

 We developed a KeywordAnalyzer that tokenizes the entire stream as a single
token, imitating how Field.Keyword is handled during indexing. We only want
one field to be “analyzed” in this manner, so we leverage the PerFieldAnalyzer-
Wrapper to apply it only to the partnum field. First let’s look at the KeywordAnalyzer
in action as it fixes the situation:

 public void testPerFieldAnalyzer() throws Exception {
 PerFieldAnalyzerWrapper analyzer = new PerFieldAnalyzerWrapper(
 new SimpleAnalyzer());
 analyzer.addAnalyzer("partnum", new KeywordAnalyzer());

 Query query = QueryParser.parse("partnum:Q36 AND SPACE",
 "description",
 analyzer);

 Hits hits = searcher.search(query);
 assertEquals("Q36 kept as-is",
 "+partnum:Q36 +space", query.toString("description"));
 assertEquals("doc found!", 1, hits.length());

 }

We apply the KeywordAnalyzer only to the partnum field, and we use the Simple-
Analyzer for all other fields. This is the same effective result as during indexing.
Note that the query now has the proper term for the partnum field, and the doc-
ument is found as expected.

The built-in PerFieldAnalyzerWrapper constructor requires the default analyzer
as a parameter. To assign a different analyzer to a field, use the addAnalyzer

Apply
KeywordAnalyzer
only to partnum

 b

Document
is found

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

124 CHAPTER 4
Analysis
method. During tokenization, the analyzer specific to the field name is used; the
default is used if no field-specific analyzer has been assigned.

 The internals of KeywordAnalyzer illustrate character buffering. Listing 4.4
shows the entire analyzer implementation.

/**
 * "Tokenizes" the entire stream as a single token.
 */
public class KeywordAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName,
 final Reader reader) {
 return new TokenStream() {
 private boolean done;
 private final char[] buffer = new char[1024];
 public Token next() throws IOException {
 if (!done) {
 done = true;
 StringBuffer buffer = new StringBuffer();
 int length = 0;
 while (true) {
 length = reader.read(this.buffer);
 if (length == -1) break;

 buffer.append(this.buffer, 0, length);
 }
 String text = buffer.toString();
 return new Token(text, 0, text.length());
 }
 return null;
 }
 };
 }
}

Given KeywordAnalyzer, we could streamline our code (in KeywordAnalyzer-
Test.setUp) and use the same PerFieldAnalyzerWrapper used in testPerField-
Analyzer during indexing. Using a KeywordAnalyzer on special fields during
indexing would eliminate the use of Field.Keyword during indexing and replace
it with Field.Text. Aesthetically, it may be pleasing to see the same analyzer
used during indexing and querying, and using PerFieldAnalyzerWrapper makes
this possible.

Listing 4.4 KeywordAnalyzer: emulating Field.Keyword
Licensed to Jason Ruesch <krhonos713@hotmail.com>

“Sounds like” querying 125
4.4.1 Alternate keyword analyzer

Take note of the TokenStream infrastructure (figure 4.2 and table 4.1). A simpler
keyword analyzer is possible if you’re sure your keywords are 255 characters or
less. Subclassing CharTokenizer and saying that every character is a token charac-
ter gives this much cleaner implementation:

public class SimpleKeywordAnalyzer extends Analyzer {

 public TokenStream tokenStream(String fieldName,
 Reader reader) {
 return new CharTokenizer(reader) {
 protected boolean isTokenChar(char c) {
 return true;
 }
 };
 }

}

In our example, we could substitute KeywordAnalyzer with SimpleKeyword-
Analyzer since our part numbers are definitely less than 255 characters. You
certainly don’t want user-enterable fields to be anywhere near 255 characters
in length!

4.5 “Sounds like” querying

Have you ever played the game Charades, cupping your hand to your ear to
indicate that your next gestures refer to words that “sound like” the real words
you’re trying to convey? Neither have we. Suppose, though, that a high-paying
client has asked you to implement a search engine accessible by J2ME-enabled
devices, such as a cell phone, to help during those tough charade matches. In
this section, we’ll implement an analyzer to convert words to a phonetic root
using an implementation of the Metaphone algorithm from the Jakarta Com-
mons Codec project. We chose the Metaphone algorithm as an example, but
other algorithms are available, such as Soundex.

 Being the test-driven guys we are, we begin with a test to illustrate the high-
level goal of our search experience:

public void testKoolKat() throws Exception {
 RAMDirectory directory = new RAMDirectory();
 Analyzer analyzer = new MetaphoneReplacementAnalyzer();

 IndexWriter writer = new IndexWriter(directory, analyzer, true);
Licensed to Jason Ruesch <krhonos713@hotmail.com>

126 CHAPTER 4
Analysis
 Document doc = new Document();
 doc.add(Field.Text("contents", "cool cat"));
 writer.addDocument(doc);
 writer.close();

 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = QueryParser.parse("kool kat",
 "contents",
 analyzer);

 Hits hits = searcher.search(query);

 assertEquals(1, hits.length());
 assertEquals("cool cat", hits.doc(0).get("contents"));

 searcher.close();
 }

It seems like magic! The user searched for “kool kat”. Neither of those terms
were in our original document, yet the search found the desired match. Searches
on the original text would also return the expected matches. The trick lies under
the MetaphoneReplacementAnalyzer:

public class MetaphoneReplacementAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new MetaphoneReplacementFilter(
 new LetterTokenizer(reader));
 }
}

Because the Metaphone algorithm expects words that only include letters, the
LetterTokenizer is used to feed our metaphone filter. The LetterTokenizer doesn’t
lowercase, however. The tokens emitted are replaced by their metaphone equiva-
lent, so lowercasing is unnecessary. Let’s now dig into the MetaphoneReplacement-
Filter, where the real work is done:

public class MetaphoneReplacementFilter extends TokenFilter {
 public static final String METAPHONE = "METAPHONE";

 private Metaphone metaphoner = new Metaphone();

 public MetaphoneReplacementFilter(TokenStream input) {
 super(input);
 }

 public Token next() throws IOException {
 Token t = input.next();

Original
document

User typed in
hip query

Hip query
matches!

Original value
still available

org.apache.commons
.codec.language.
Metaphone

Pull next
token
Licensed to Jason Ruesch <krhonos713@hotmail.com>

“Sounds like” querying 127
 if (t == null) return null;

 try {
 return new Token(metaphoner.encode(t.termText()),
 t.startOffset(),
 t.endOffset(),
 METAPHONE);
 } catch (EncoderException e) {
 // if cannot encode, simply return original token
 return t;
 }

 }
}

The token emitted by our MetaphoneReplacementFilter, as its name implies, liter-
ally replaces the incoming token (unless for some reason the encoding failed, and
the original is emitted). This new token is set with the same position offsets as the
original, because it’s a replacement in the same position. The last argument to
the Token constructor indicates the token type. Each token can be associated with a
String indicating its type, giving meta-data to later filtering in the analysis pro-
cess. The StandardTokenizer, as discussed in “Token type usefulness” under sec-
tion 4.2.3, tags tokens with a type that is later used by the StandardFilter. The
METAPHONE type isn’t used in our examples, but it demonstrates that a later filter
could be Metaphone-token aware by calling Token’s type() method.

NOTE Token types, such as the METAPHONE type used in MetaphoneReplacement-
Analyzer, are carried through the analysis phase but aren’t encoded
into the index. Unless specified otherwise, the type word is used for to-
kens by default. Section 4.2.3 discusses token types further.

As always, it’s good to view what an analyzer is doing with text. Using our Analyzer-
Utils, two phrases that sound similar yet are spelled completely differently are
tokenized and displayed:

public static void main(String[] args) throws IOException {
 MetaphoneReplacementAnalyzer analyzer =
 new MetaphoneReplacementAnalyzer();
 AnalyzerUtils.displayTokens(analyzer,
 "The quick brown fox jumped over the lazy dogs");

 System.out.println("");
 AnalyzerUtils.displayTokens(analyzer,
 "Tha quik brown phox jumpd ovvar tha lazi dogz");
}

When null, end
has been reached

Convert token
to Metaphone
encoding;
leave position
info as is

Set token type
Licensed to Jason Ruesch <krhonos713@hotmail.com>

128 CHAPTER 4
Analysis
We get a sample of the Metaphone encoder, shown here:

[0] [KK] [BRN] [FKS] [JMPT] [OFR] [0] [LS] [TKS]
[0] [KK] [BRN] [FKS] [JMPT] [OFR] [0] [LS] [TKS]

Wow—an exact match!
 In practice, it’s unlikely you’ll want sounds-like matches except in special

places; otherwise, far too many undesired matches may be returned.3 In the
“What would Google do?” sense, a sounds-like feature would be great for situa-
tions where a user misspelled every word and no documents were found, but
alternative words could be suggested. One implementation approach to this idea
could be to run all text through a sounds-like analysis and build a cross-reference
lookup to consult when a correction is needed.

4.6 Synonyms, aliases, and words that
mean the same

Our next custom analyzer injects synonyms of words into the outgoing token
stream, but places the synonyms in the same position as the original word. By add-
ing synonyms during indexing, you make searches find documents that may not
contain the original search terms but match the synonyms of those words. Test
first, of course:

 public void testJumps() throws Exception {
 Token[] tokens =
 AnalyzerUtils.tokensFromAnalysis(synonymAnalyzer4, "jumps");

 AnalyzerUtils.assertTokensEqual(tokens,
 new String[] {"jumps", "hops", "leaps"});

 // ensure synonyms are in the same position as the original
 assertEquals("jumps", 1, tokens[0].getPositionIncrement());
 assertEquals("hops", 0, tokens[1].getPositionIncrement());
 assertEquals("leaps", 0, tokens[2].getPositionIncrement());
 }

3 While working on this chapter, Erik asked his brilliant 5-year-old son, Jakob, how he would spell cool
cat. Jakob replied, “c-o-l c-a-t”. What a wonderfully confusing language English is. Erik imagines that
a “sounds-like” feature in search engines designed for children would be very useful. Metaphone en-
codes cool, kool, and col all as KL.

4 The construction of SynonymAnalyzer is shown shortly.

Analyze one word

Three words
come out
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms, aliases, and words that mean the same 129
Notice that our unit test shows not only that synonyms for the word jumps are
emitted from the SynonymAnalyzer but also that the synonyms are placed in the
same position (increment of zero) as the original word.

 Let’s see what the SynonymAnalyzer is doing; then we’ll explore the implications
of position increments. Figure 4.4 graphically shows what our SynonymAnalyzer
does to text input, and listing 4.5 is the implementation.

public class SynonymAnalyzer extends Analyzer {
 private SynonymEngine engine;

 public SynonymAnalyzer(SynonymEngine engine) {
 this.engine = engine;
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 TokenStream result = new SynonymFilter(

Listing 4.5 SynonymAnalyzer implementation

Figure 4.4
SynonymAnalyzer
visualized as factory
automation
Licensed to Jason Ruesch <krhonos713@hotmail.com>

130 CHAPTER 4
Analysis
 new StopFilter(
 new LowerCaseFilter(
 new StandardFilter(
 new StandardTokenizer(reader))),
 StandardAnalyzer.STOP_WORDS),
 engine
);
 return result;
 }
}

Once again, the analyzer code is minimal and simply chains a Tokenizer
together with a series of TokenFilters; in fact, this is the StandardAnalyzer
wrapped with an additional filter. (See table 4.1 for more on these basic analyzer
building blocks.) The final TokenFilter in the chain is the new SynonymFilter
(listing 4.6), which gets to the heart of the current discussion. When you’re
injecting terms, buffering is needed. This filter uses a Stack as the buffer.

public class SynonymFilter extends TokenFilter {
 public static final String TOKEN_TYPE_SYNONYM = "SYNONYM";

 private Stack synonymStack;
 private SynonymEngine engine;

 public SynonymFilter(TokenStream in, SynonymEngine engine) {
 super(in);
 synonymStack = new Stack();
 this.engine = engine;
 }

 public Token next() throws IOException {
 if (synonymStack.size() > 0) {
 return (Token) synonymStack.pop();
 }

 Token token = input.next();
 if (token == null) {
 return null;
 }

 addAliasesToStack(token);

 return token;
 }

Listing 4.6 SynonymFilter: buffering tokens and emitting one at a time

Synonym
buffer

Pop buffered
synonyms

 b

Read next token c

Push synonyms of current token onto stack d

Return current token e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms, aliases, and words that mean the same 131
 private void addAliasesToStack(Token token) throws IOException {
 String[] synonyms = engine.getSynonyms(token.termText());

 if (synonyms == null) return;

 for (int i = 0; i < synonyms.length; i++) {
 Token synToken = new Token(synonyms[i],
 token.startOffset(),
 token.endOffset(),
 TOKEN_TYPE_SYNONYM);
 synToken.setPositionIncrement(0);

 synonymStack.push(synToken);
 }
 }
}

The code successively pops the stack of buffered synonyms from the last
streamed-in token until it’s empty.
After all previous token synonyms have been emitted, we read the next token.
We push all synonyms of the current token onto the stack.
Now we return the current (and original) token before its associated synonyms.
Synonyms are retrieved from the SynonymEngine.
We push each synonym onto the stack.
The position increment is set to zero, allowing synonyms to be virtually in the
same place as the original term.

The design of SynonymAnalyzer allows for pluggable SynonymEngine implementa-
tions. SynonymEngine is a one-method interface:

public interface SynonymEngine {
 String[] getSynonyms(String s) throws IOException;
}

Using an interface for this design easily allows mock-object implementations for
testing purposes.5 We leave it as an exercise for you to create production-quality
SynonymEngine implementations.6 For our examples, we use a simple mock that’s
hard-coded with a few synonyms:

Retrieve synonyms
 f

Push synonyms
onto stack

 g

Set position
increment
to zero

 h

 b

 c
 d
 e
 f
 g
 h

5 If mock objects are new to you, see the “about this book” section at the beginning of the book for a
description and references you can consult for more information.

6 It’s cruel to leave you hanging with a mock implementation, isn’t it? Actually, we’ve implemented a
powerful SynonymEngine using the WordNet database. It’s covered in section 8.6.2.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

132 CHAPTER 4
Analysis
public class MockSynonymEngine implements SynonymEngine {
 private static HashMap map = new HashMap();

 static {
 map.put("quick", new String[] {"fast", "speedy"});
 map.put("jumps", new String[] {"leaps", "hops"});
 map.put("over", new String[] {"above"});
 map.put("lazy", new String[] {"apathetic", "sluggish"});
 map.put("dogs", new String[] {"canines", "pooches"});
 }

 public String[] getSynonyms(String s) {
 return (String[]) map.get(s);
 }
}

The synonyms generated by MockSynonymEngine are one-way: For example, quick
has the synonyms fast and speedy, but fast has no synonyms. This is, by definition,
a mock object used for testing in a controlled environment, so we don’t need to
worry about the one-way nature of this implementation.

 Leveraging the position increment seems powerful, and indeed it is. You
should only modify increments knowing of some odd cases that arise in search-
ing, though. Since synonyms are indexed just like other terms, TermQuery works as
expected. Also, PhraseQuery works as expected when we use a synonym in place of
an original word. The SynonymAnalyzerTest test case in listing 4.7 demonstrates
things working well using API-created queries.

public class SynonymAnalyzerTest extends TestCase {
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private static SynonymAnalyzer synonymAnalyzer =
 new SynonymAnalyzer(new MockSynonymEngine());

 public void setUp() throws Exception {
 directory = new RAMDirectory();

 IndexWriter writer = new IndexWriter(directory,
 synonymAnalyzer,
 true);
 Document doc = new Document();
 doc.add(Field.Text("content",
 "The quick brown fox jumps over the lazy dogs"));
 writer.addDocument(doc);
 writer.close();

 searcher = new IndexSearcher(directory);

Listing 4.7 SynonymAnalyzerTest: showing that synonym queries work

Analyze with
SynonymAnalyzer

 b

Index single
document
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms, aliases, and words that mean the same 133
 }

 public void tearDown() throws Exception {
 searcher.close();
 }

 public void testSearchByAPI() throws Exception {

 TermQuery tq = new TermQuery(new Term("content", "hops"));
 Hits hits = searcher.search(tq);
 assertEquals(1, hits.length());

 PhraseQuery pq = new PhraseQuery();
 pq.add(new Term("content", "fox"));
 pq.add(new Term("content", "hops"));
 hits = searcher.search(pq);
 assertEquals(1, hits.length());
 }
}

We perform the analysis with a custom SynonymAnalyzer, using MockSynonym-
Engine.
A search for the word hops matches the document.
A search for the phrase “fox hops” also matches.

The phrase “…fox jumps…” was indexed, and our SynonymAnalyzer injected hops
in the same position as jumps. A TermQuery for hops succeeded, as did an exact
PhraseQuery for “fox hops”. Excellent!

 All is well, until we decide to use QueryParser to create queries instead of
doing so directly with the API. Once again, a test points out the oddity explicitly:

public void testWithQueryParser() throws Exception {
 Query query = QueryParser.parse("\"fox jumps\"",
 "content",
 synonymAnalyzer);
 Hits hits = searcher.search(query);
 assertEquals("!!!! what?!", 0, hits.length());

 query = QueryParser.parse("\"fox jumps\"",
 "content",
 new StandardAnalyzer());
 hits = searcher.search(query);
 assertEquals("*whew*", 1, hits.length());
}

The first part of testWithQueryParser uses the SynonymAnalyzer to also analyze
the query string itself. Oddly, the query fails to match, even using the same analyzer

Search for
“hops”

 c

Search for
“fox hops”

 d

 b

 c
 d

Analyzer can’t find
document using phrase
from original document

StandardAnalyzer still
finds document
Licensed to Jason Ruesch <krhonos713@hotmail.com>

134 CHAPTER 4
Analysis
used for indexing. But, if we use the StandardAnalyzer (recall that Synonym-
Analyzer has the same core, except for injecting the synonyms), the expected
match is found. Why is this? One of the first diagnostic steps recommended when
using QueryParser is to dump the toString() value of the Query instance:

public static void main(String[] args) throws Exception {
 Query query = QueryParser.parse("\"fox jumps\"",
 "content",
 synonymAnalyzer);

 System.out.println("\"fox jumps\" parses to " +
 query.toString("content"));

 System.out.println("From AnalyzerUtils.tokensFromAnalysis: ");
 AnalyzerUtils.displayTokens(synonymAnalyzer,
 "\"fox jumps\"");
}

Here’s the output:

"fox jumps" parses to "fox jumps hops leaps"

From AnalyzerUtils.tokensFromAnalysis:
[fox] [jumps] [hops] [leaps]

QueryParser works similarly to our AnalyzerUtils.tokensFromAnalysis, meaning
it glues all terms from analysis together to form a PhraseQuery and ignores token
position increment information. The search for “fox jumps” doesn’t work using
QueryParser and the SynonymAnalyzer because internally the query is for the
phrase “fox jumps hops leaps”. By having a slightly different analysis process for
QueryParser than for indexing, the problem is solved. There is no need to inject
synonyms while querying anyway, since the index already contains the synonyms.

 You have another option with synonyms: expanding them into each query
rather than indexing. We didn’t implement this approach, but the techniques
and tools provided in this chapter would be essential to implement it effectively.
The awkwardly named PhrasePrefixQuery (see section 5.2) is one option to con-
sider, perhaps created through an overridden QueryParser.getFieldQuery
method; this is a possible option to explore if you wish to implement synonym
injection at query time.

4.6.1 Visualizing token positions

Our AnalyzerUtils.tokensFromAnalysis doesn’t show us all the information
when dealing with analyzers that set position increments other than 1. In order
to get a better view of these types of analyzers, we add an additional utility
method, displayTokensWithPositions, to AnalyzerUtils:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms, aliases, and words that mean the same 135
 public static void displayTokensWithPositions
 (Analyzer analyzer, String text) throws IOException {
 Token[] tokens = tokensFromAnalysis(analyzer, text);

 int position = 0;

 for (int i = 0; i < tokens.length; i++) {
 Token token = tokens[i];

 int increment = token.getPositionIncrement();

 if (increment > 0) {
 position = position + increment;
 System.out.println();
 System.out.print(position + ": ");
 }

 System.out.print("[" + token.termText() + "] ");
 }
 }

We wrote a quick piece of code to see what our SynonymAnalyzer is really doing:

public class SynonymAnalyzerViewer {
 public static void main(String[] args) throws IOException {
 AnalyzerUtils.displayTokensWithPositions(
 new SynonymAnalyzer(new MockSynonymEngine()),
 "The quick brown fox jumps over the lazy dogs");
 }
}

And we can now visualize the synonyms placed in the same positions as the orig-
inal words:

1: [quick] [speedy] [fast]
2: [brown]
3: [fox]
4: [jumps] [hops] [leaps]
5: [over] [above]
6: [lazy] [sluggish] [apathetic]
7: [dogs] [pooches] [canines]

Each number on the left represents the token position. The numbers here are
continuous, but they wouldn’t be if the analyzer left holes (as you’ll see with the
next custom analyzer). Multiple terms shown for a single position illustrates
where synonyms were added.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

136 CHAPTER 4
Analysis
4.7 Stemming analysis

Our final analyzer pulls out all the stops. It has a ridiculous, yet descriptive name:
PositionalPorterStopAnalyzer. This analyzer removes stop words, leaving posi-
tional holes where words are removed, and also leverages a stemming filter.

 The PorterStemFilter is shown in figure 4.3, but it isn’t used by any built-in
analyzer. It stems words using the Porter stemming algorithm created by Dr. Mar-
tin Porter, and it’s best defined in his own words:

The Porter stemming algorithm (or ‘Porter stemmer’) is a process for removing
the commoner morphological and inflexional endings from words in English.
Its main use is as part of a term normalisation process that is usually done when
setting up Information Retrieval systems.7

In other words, the various forms of a word are reduced to a common root form.
For example, the words breathe, breathes, breathing, and breathed, via the Porter
stemmer, reduce to breath.

 The Porter stemmer is one of many stemming algorithms. See section 8.3.1,
page 283, for coverage of an extension to Lucene that implements the Snowball
algorithm (also created by Dr. Porter). KStem is another stemming algorithm
that has been adapted to Lucene (search Google for KStem and Lucene).

4.7.1 Leaving holes

Gaps are left where stop words are removed by adjusting the position increment
of the tokens (see also “Looking inside tokens” in section 4.2.3). This is illustrated
from the output of AnalyzerUtils.displayTokensWithPositions:

2: [quick]
3: [brown]
4: [fox]
5: [jump]
6: [over]
8: [lazi]
9: [dog]

Positions 1 and 7 are missing due to the removal of the. Stop-word removal that
leaves gaps is accomplished using a custom PositionalStopFilter:

public class PositionalStopFilter extends TokenFilter {
 private Set stopWords;

7 From Dr. Porter’s website: http://www.tartarus.org/~martin/PorterStemmer/index.html.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Stemming analysis 137
 public PositionalStopFilter(TokenStream in, Set stopWords) {
 super(in);
 this.stopWords = stopWords;
 }

 public final Token next() throws IOException {
 int increment = 0;
 for (Token token = input.next();
 token != null; token = input.next()) {

 if (!stopWords.contains(token.termText())) {
 token.setPositionIncrement(
 token.getPositionIncrement() + increment);
 return token;
 }

 increment++;
 }

 return null;
 }
}

The analyzer, PositionalPorterStopAnalyzer (shown in listing 4.8), provides the
list of stop words to remove.

4.7.2 Putting it together

This custom analyzer uses our custom stop-word removal filter, which is fed from
a LowerCaseTokenizer. The results of the stop filter are fed to the Porter stem-
mer. Listing 4.8 shows the full implementation of this sophisticated analyzer.
LowerCaseTokenizer kicks off the analysis process, feeding tokens through our
custom stop-word removal filter and finally stemming the words using the built-
in Porter stemmer.

public class PositionalPorterStopAnalyzer extends Analyzer {
 private Set stopWords;

 public PositionalPorterStopAnalyzer() {
 this(StopAnalyzer.ENGLISH_STOP_WORDS);
 }

 public PositionalPorterStopAnalyzer(String[] stopList) {
 stopWords = StopFilter.makeStopSet(stopList);
 }

Leave gap for
skipped stop
words

Listing 4.8 PositionalPorterStopAnalyzer: removes stop words (leaving gaps)
and stems words
Licensed to Jason Ruesch <krhonos713@hotmail.com>

138 CHAPTER 4
Analysis
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new PorterStemFilter(
 new PositionalStopFilter(
 new LowerCaseTokenizer(reader),
 stopWords)
);
 }
}

Leaving gaps when stop words are removed makes logical sense but introduces
new issues that we explore next.

4.7.3 Hole lot of trouble

As you saw with the SynonymAnalyzer, messing with token position information
can cause trouble during searching. PhraseQuery and QueryParser are the two
troublemakers. Exact phrase matches now fail, as illustrated in our test case:

public class PositionalPorterStopAnalyzerTest extends TestCase {
 private static PositionalPorterStopAnalyzer porterAnalyzer =
 new PositionalPorterStopAnalyzer();

 private RAMDirectory directory;

 public void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(directory, porterAnalyzer, true);

 Document doc = new Document();
 doc.add(Field.Text("contents",
 "The quick brown fox jumps over the lazy dogs"));
 writer.addDocument(doc);
 writer.close();
 }

 public void testExactPhrase() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = QueryParser.parse("\"over the lazy\"",
 "contents",
 porterAnalyzer);

 Hits hits = searcher.search(query);
 assertEquals("exact match not found!", 0, hits.length());
 }

}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Stemming analysis 139
As shown, an exact phrase query didn’t match. This is disturbing, of course.
Unlike the synonym analyzer situation, using a different analyzer won’t solve the
problem. The difficulty lies deeper inside PhraseQuery and its current inability to
deal with positional gaps. All terms in a PhraseQuery must be side by side, and in
our test case, the phrase it’s searching for is “over lazi” (stop word removed with
remaining words stemmed).

 PhraseQuery does allow a little looseness, called slop. This is covered in greater
detail in section 3.4.5; however, it would be unkind to leave without showing a
phrase query working. Setting the slop to 1 allows the query to effectively ignore
the gap:

 public void testWithSlop() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);

 QueryParser parser = new QueryParser("contents",
 porterAnalyzer);
 parser.setPhraseSlop(1);

 Query query = parser.parse("\"over the lazy\"");

 Hits hits = searcher.search(query);
 assertEquals("hole accounted for", 1, hits.length());
 }

The value of the phrase slop factor, in a simplified definition for this case, repre-
sents how many stop words could be present in the original text between indexed
words. Introducing a slop factor greater than zero, however, allows even more
inexact phrases to match. In this example, searching for “over lazy” also matches.
With stop-word removal in analysis, doing exact phrase matches is, by definition,
not possible: The words removed aren’t there, so you can’t know what they were.

 The slop factor addresses the main problem with searching using stop-word
removal that leaves holes; you can now see the benefit our analyzer provides,
thanks to the stemming:

 public void testStems() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = QueryParser.parse("laziness",
 "contents",
 porterAnalyzer);
 Hits hits = searcher.search(query);
 assertEquals("lazi", 1, hits.length());

 query = QueryParser.parse("\"fox jumped\"",
 "contents",
 porterAnalyzer);
Licensed to Jason Ruesch <krhonos713@hotmail.com>

140 CHAPTER 4
Analysis
 hits = searcher.search(query);
 assertEquals("jump jumps jumped jumping", 1, hits.length());
 }

Both laziness and the phrase “fox jumped” matched our indexed document,
allowing users a bit of flexibility in the words used during searching.

4.8 Language analysis issues

Dealing with languages in Lucene is an interesting and multifaceted issue. How
can text in various languages be indexed and subsequently retrieved? As a devel-
oper building I18N-friendly applications around Lucene, what issues do you
need to consider?

 You must contend with several issues when analyzing text in various lan-
guages. The first hurdle is ensuring that character-set encoding is done properly
such that external data, such as files, are read into Java properly. During the
analysis process, different languages have different sets of stop words and unique
stemming algorithms. Perhaps accents should be removed from characters as
well, which would be language dependent. Finally, you may require language
detection if you aren’t sure what language is being used. Each of these issues is
ultimately up to the developer to address, with only basic building-block support
provided by Lucene. However, a number of analyzers and additional building
blocks such as Tokenizers and TokenStreams are available in the Sandbox (dis-
cussed in section 8.3) and elsewhere online.

 This section discusses Lucene’s built-in handling for non-English languages,
but we begin first with a brief introduction to Unicode and character encodings.

4.8.1 Unicode and encodings

Internally, Lucene stores all characters in the standard UTF-8 encoding. Java
frees us from many struggles by automatically handling Unicode within Strings
and providing facilities for reading in external data in the many encodings. You,
however, are responsible for getting external text into Java and Lucene. If you’re
indexing files on a file system, you need to know what encoding the files were
saved as in order to read them properly. If you’re reading HTML or XML from an
HTTP server, encoding issues get a bit more complex. Encodings can be speci-
fied in an HTTP content-type header or specified within the document itself in
the XML header or an HTML <meta> tag.

 We won’t elaborate on these encoding details, not because they aren’t impor-
tant, but because they’re separate issues from Lucene. Please refer to appendix C
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Language analysis issues 141
for several sources of more detailed information on encoding topics. In particu-
lar, if you’re new to I18N issues, read Joel Spolsky’s excellent article “The Absolute
Minimum Every Software Developer Absolutely, Positively Must Know About Uni-
code and Character Sets (No Excuses!)” (http://www.joelonsoftware.com/articles/
Unicode.html) and the Java language Internationalization tutorial (http://
java.sun.com/docs/books/tutorial/i18n/intro/). Additionally, the next version of
the Java language (code-named Tiger) transitions towards Unicode 4.0 support
for supplemental characters.

 We’ll proceed with the assumption that you have your text available as Uni-
code, and move on to the Lucene-specific language concerns.

4.8.2 Analyzing non-English languages

All the details of the analysis process apply when you’re dealing with text in non-
English languages. Extracting terms from text is the goal. With Western lan-
guages, where whitespace and punctuation are used to separate words, you must
adjust stop-word lists and stemming algorithms to be specific to the language of
the text being analyzed.

 Beyond the built-in analyzers we’ve discussed, the core Lucene distribution
provides two language-specific analyzers: GermanAnalyzer and RussianAnalyzer.
Both of these employ language-specific stemming and stop-word removal. Also
freely available is the SnowballAnalyzer family of stemmers, which supports
many European languages. We discuss SnowballAnalyzer in section 8.3.1.

 The GermanAnalyzer begins with a StandardTokenizer and StandardFilter
(like the StandardAnalyzer) and then feeds the stream through a StopFilter and
a GermanStemFilter. A built-in set of common German stop words is used by
default; you can override it using the mechanism discussed in section 4.3.1. The
GermanStemFilter stems words based on German-language rules and also pro-
vides a mechanism to provide an exclusion set of words that shouldn’t be
stemmed (which is empty by default).

 The RussianAnalyzer begins with a RussianLetterTokenizer, which supports
several character sets such as Unicode and CP1251, and then lowercases in a
character set–specific manner using a RussianLowerCaseFilter. The StopFilter
removes stop words using a default set of Russian words; it also lets you provide a
custom set. Finally, the RussianStemFilter stems words using the Snowball algo-
rithm (see section 8.3.1 for more details).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

142 CHAPTER 4
Analysis
4.8.3 Analyzing Asian languages

Asian languages, such as Chinese, Japanese, and Korean (also denoted as CJK),
generally use ideograms rather than an alphabet to represent words. These pic-
torial words may or may not be separated by whitespace and thus require a dif-
ferent type of analysis that recognizes when tokens should be split. The only
built-in analyzer capable of doing anything useful with Asian text is the Standard-
Analyzer, which recognizes some ranges of the Unicode space as CJK characters
and tokenizes them individually.

 However, two analyzers in the Lucene Sandbox are suitable for Asian language
analysis (see section 8.1 for more details on the Sandbox). In our sample book data,
the Chinese characters for the book Tao Te Ching were added to the title. Because
our data originates in Java properties files, Unicode escape sequences are used:8

title=Tao Te Ching \u9053\u5FB7\u7D93

We used StandardAnalyzer for all tokenized fields in our index, which tokenizes
each English word as expected (tao, te, and ching) as well as each of the Chinese
characters as separate terms (tao te ching) even though there is no space between
them. Our ChineseTest demonstrates that searching by the word tao using its Chi-
nese representation works as desired:

public class ChineseTest extends LiaTestCase {
 public void testChinese() throws Exception {
 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(
 new TermQuery(new Term("contents", "道 ")));
 assertEquals("tao", 1, hits.length());
 }
}

Note that our ChineseTest.java file was saved in UTF-8 format and compiled
using the UTF8 encoding switch for the javac compiler. We had to ensure that the
representations of the Chinese characters are encoded and read properly, and
use a CJK-aware analyzer.

 Similar to the AnalyzerDemo in listing 4.2, we created a ChineseDemo (listing 4.9)
program to illustrate how various analyzers work with Chinese text. This demo
uses AWT Labels to properly display the characters regardless of your locale and
console environment.

8 java.util.Properties loads properties files using the ISO-8859-1 encoding but allows characters to
be encoded using standard Java Unicode \u syntax. Java includes a native2ascii program that can
convert natively encoded files into the appropriate format.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Language analysis issues 143
public class ChineseDemo {
 private static String[] strings = {"道德經 "};

 private static Analyzer[] analyzers = {
 new SimpleAnalyzer(),
 new StandardAnalyzer(),
 new ChineseAnalyzer(),
 new CJKAnalyzer()
 };

 public static void main(String args[]) throws Exception {

 for (int i = 0; i < strings.length; i++) {
 String string = strings[i];
 for (int j = 0; j < analyzers.length; j++) {
 Analyzer analyzer = analyzers[j];
 analyze(string, analyzer);
 }
 }

 }

 private static void analyze(String string, Analyzer analyzer)
 throws IOException {
 StringBuffer buffer = new StringBuffer();
 Token[] tokens =
 AnalyzerUtils.tokensFromAnalysis(analyzer, string);
 for (int i = 0; i < tokens.length; i++) {
 buffer.append("[");
 buffer.append(tokens[i].termText());
 buffer.append("] ");
 }

 String output = buffer.toString();

 Frame f = new Frame();
 String name = analyzer.getClass().getName();
 f.setTitle(name.substring(name.lastIndexOf('.') + 1)
 + " : " + string);
 f.setResizable(false);

 Font font = new Font(null, Font.PLAIN, 36);
 int width = getWidth(f.getFontMetrics(font), output);

 f.setSize((width < 250) ? 250 : width + 50, 75);

 Label label = new Label(buffer.toString());
 label.setSize(width, 75);
 label.setAlignment(Label.CENTER);
 label.setFont(font);
 f.add(label);

Listing 4.9 ChineseDemo: illustrates what analyzers do with Chinese text

Chinese text to
be analyzed

Analyzers from
Sandbox

Retrieve tokens
from analysis using

AnalyzerUtils

AWT Label displays
analysis
Licensed to Jason Ruesch <krhonos713@hotmail.com>

144 CHAPTER 4
Analysis
 f.setVisible(true);
 }

 private static int getWidth(FontMetrics metrics, String s) {
 int size = 0;
 for (int i = 0; i < s.length(); i++) {
 size += metrics.charWidth(s.charAt(i));
 }

 return size;
 }
}

CJKAnalyzer and ChineseAnalyzer are analyzers found in the Lucene Sandbox;
they aren’t included in the core Lucene distribution. ChineseDemo shows the out-
put using an AWT Label component to avoid any confusion that might arise from
console output encoding or limited fonts mangling things; you can see the out-
put in figure 4.5.

Figure 4.5 ChineseDemo illustrating analysis of the title Tao Te Ching
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Nutch analysis 145
The CJKAnalyzer pairs characters in overlapping windows of two characters each.
Many CJK words are two characters. By pairing characters in this manner, words
are likely to be kept together (as well as disconnected characters, increasing the
index size). The ChineseAnalyzer takes a simpler approach and, in our example,
mirrors the results from the built-in StandardAnalyzer by tokenizing each Chi-
nese character. Words that consist of multiple Chinese characters are split into
terms for each component character.

4.8.4 Zaijian9

A major hurdle (unrelated to Lucene) remains when you’re dealing with various
languages: handling text encoding. The StandardAnalyzer it still the best built-in
general-purpose analyzer, even accounting for CJK characters; however, the
Sandbox CJKAnalyzer seems better suited for Asian language analysis.

 When you’re indexing documents in multiple languages into a single index,
using a per-Document analyzer is appropriate. You may also want to add a field to
documents indicating their language; this field can be used to filter search results
or for display purposes during retrieval. In “Controlling date parsing locale” in
section 3.5.5, we show how to retrieve the locale from a user’s web browser; this
could be automatically used in queries.

 One final topic is language detection. This, like character encodings, is out-
side the scope of Lucene, but it may be important to your application. We don’t
cover language-detection techniques in this book, but it’s an active area of
research with several implementations to choose from (see appendix C).

4.9 Nutch analysis

We don’t have the source code to Google, but we do have the open-source project
Nutch, created by Lucene’s creator Doug Cutting. Our Nutch case study in section
10.1 discusses the details of the Nutch architecture. There is another interesting
facet to Nutch: how it analyzes text. Nutch does something very interesting with
stop words, which it calls common terms. If all words are indexed, an enormous
number of documents become associated with each common term, such as the.
Querying for the is practically a nonsensical query, given that the majority of doc-
uments contain that term. When common terms are used in a query, but not within
a phrase, such as the quick brown with no other adornments or quotes, common

9 Ziajian means good-bye in Chinese.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

146 CHAPTER 4
Analysis
terms are discarded. However, if a series of terms is surrounded by double-quotes,
such as “the quick brown”, a fancier trick is played, which we detail in this section.

 Nutch combines an index-time analysis bigram (grouping two consecutive
words as a single token) technique with a query-time optimization of phrases.
This results in a far smaller document space considered during searching; for
example, far fewer documents have the quick side by side than contain the. Using
the internals of Nutch, we created a simple example to demonstrate the Nutch
analysis trickery. Listing 4.10 first analyzes the phrase “The quick brown…”
using the NutchDocumentAnalyzer and then parses a query of “the quick brown”
to demonstrate the Lucene query created.

public class NutchExample {
 public static void main(String[] args) throws IOException {
 NutchDocumentAnalyzer analyzer = new NutchDocumentAnalyzer();
 displayTokensWithDetails(analyzer, "The quick brown fox...");

 net.nutch.searcher.Query nutchQuery =
 net.nutch.searcher.Query.parse("\"the quick brown\"");
 Query query = QueryTranslator.translate(nutchQuery);
 System.out.println("query = " + query);
 }
}

Nutch uses a custom analyzer, NutchDocumentAnalyzer.
displayTokensWithDetail is similar to our previous AnalyzerUtils methods, except
Nutch demands the field name content. So, we create a custom one-off version of
this utility to inspect Nutch.
Nutch clashes with some of Lucene’s class names, so fully qualified class names
are necessary. The net.nutch.searcher.Query class isn’t related to Lucene’s
Query class.
A Nutch Query is translated into a Lucene Query instance.

The analyzer output shows how “the quick” becomes a bigram, but the word the
isn’t discarded. The bigram resides in the same token position as the:

1: [the:<WORD>] [the-quick:gram]
2: [quick:<WORD>]

Listing 4.10 NutchExample: demonstrating the Nutch analysis and query-parsing
techniques

Custom analyzer

 b

displayTokensWithDetail method
 c

Use fully qualified class names

 d

Translate Nutch Query
 e

 b
 c

 d

 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 147
3: [brown:<WORD>]
4: [fox:<WORD>]

Because additional tokens are created during analysis, the index is larger, but the
benefit of this trade-off is that searches for exact-phrase queries are much faster.
And there’s a bonus: No terms were discarded during indexing.

 During querying, phrases are also analyzed and optimized. The query output
(recall from section 3.5.1 that Query’s toString() is handy) of the Lucene Query
instance for the query expression "the quick brown" is

query = (+url:"the quick brown"^4.0)
➾ (+anchor:"the quick brown"^2.0) (+content:"the-quick quick brown"

A Nutch query expands to search in the url and anchor fields as well, with higher
boosts for those fields, using the exact phrase. The content field clause is opti-
mized to only include the bigram of a position that contains an additional <WORD>
type token.

 This was a quick view of what Nutch does with indexing analysis and query
construction. Nutch continues to evolve, optimize, and tweak the various tech-
niques for indexing and querying. The bigrams aren’t taken into consideration
except in the content field; but as the document base grows, whether optimiza-
tions are needed on other fields will be reevaluated.

4.10 Summary

Analysis, while only a single facet of using Lucene, is the aspect that deserves the
most attention and effort. The words that can be searched are those emitted dur-
ing indexing analysis. Sure, using StandardAnalyzer may do the trick for your
needs, and it suffices for many applications. However, it’s important to under-
stand the analysis process. Users who take analysis for granted often run into
confusion later when they try to understand why searching for “to be or not to
be” returns no results (perhaps due to stop-word removal).

 It takes less than one line of code to incorporate an analyzer during indexing.
Many sophisticated processes may occur under the covers, such as stop-word
removal and stemming of words. Removing words decreases your index size but
can have a negative impact on precision querying.

 Because one size doesn’t fit all when it comes to analysis, you may need to
tune the analysis process for your application domain. Lucene’s elegant analyzer
architecture decouples each of the processes internal to textual analysis, letting
you reuse fundamental building blocks to construct custom analyzers. When
Licensed to Jason Ruesch <krhonos713@hotmail.com>

148 CHAPTER 4
Analysis
you’re working with analyzers, be sure to use our AnalyzerUtils, or something
similar, to see first-hand how your text is tokenized. If you’re changing analyzers,
you should rebuild your index using the new analyzer so that all documents are
analyzed in the same manner.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Advanced
search techniques

This chapter covers
■ Sorting search results
■ Spanning queries
■ Filtering
■ Multiple and remote index searching
■ Leveraging term vectors
149

Licensed to Jason Ruesch <krhonos713@hotmail.com>

150 CHAPTER 5
Advanced search techniques
Many applications that implement search with Lucene can do so using the API
introduced in chapter 3. Some projects, though, need more than the basic
searching mechanisms. In this chapter, we explore the more sophisticated
searching capabilities built into Lucene.

 A couple of odds and ends, PhrasePrefixQuery and MultiFieldQueryParser,
round out our coverage of Lucene’s additional built-in capabilities. If you’ve
used Lucene for a while, you may not recognize some of these features. Sorting,
span queries, and term vectors are all new in Lucene 1.4, dramatically increasing
Lucene’s power and flexibility.

5.1 Sorting search results

Until Lucene 1.4, search results were only returned in descending score order,
with the most relevant documents appearing first. BookScene, our hypothetical
bookstore, needs to display search results grouped into categories, and within
the category results the books should be ordered by relevance to the query. Col-
lecting all results and sorting them programmatically outside of Lucene is one
way to accomplish this; however, doing so introduces a possible performance
bottleneck if the number of results is enormous. Thankfully, expert developer
Tim Jones contributed a highly efficient enhancement to Lucene, adding sophis-
ticated sorting capabilities for search results. In this section, we explore the vari-
ous ways to sort search results, including sorting by one or more field values in
either ascending or descending order.

5.1.1 Using a sort

IndexSearcher contains several overloaded search methods. Thus far we’ve cov-
ered only the basic search(Query) method, which returns results ordered by
decreasing relevance. The sorting version of this method has the signature
search(Query, Sort). Listing 5.1 demonstrates the use of the sorting search
method. The displayHits method uses the sorting search method and displays
the Hits. The examples following will use the displayHits method to illustrate
how various sorts work.

public class SortingExample {
 private Directory directory;

 public SortingExample(Directory directory) {
 this.directory = directory;
 }

Listing 5.1 Sorting example
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Sorting search results 151
 public void displayHits(Query query, Sort sort)
 throws IOException {
 IndexSearcher searcher = new IndexSearcher(directory);

 Hits hits = searcher.search(query, sort);

 System.out.println("\nResults for: " +
 query.toString() + " sorted by " + sort);

 System.out.println(StringUtils.rightPad("Title", 30) +
 StringUtils.rightPad("pubmonth", 10) +
 StringUtils.center("id", 4) +
 StringUtils.center("score", 15));

 DecimalFormat scoreFormatter = new DecimalFormat("0.######");
 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);
 System.out.println(
 StringUtils.rightPad
 StringUtils.abbreviate(doc.get("title"), 29), 30) +
 StringUtils.rightPad(doc.get("pubmonth"), 10) +
 StringUtils.center("" + hits.id(i), 4) +
 StringUtils.leftPad(
 scoreFormatter.format(hits.score(i)), 12));
 System.out.println(" " + doc.get("category"));
// System.out.println(searcher.explain(query, hits.id(i)));
 }

 searcher.close();
 }}

The Sort object encapsulates an ordered collection of field sorting information.
We call the overloaded search method with the Sort object.
The Sort class has informative toString() output.
We use StringUtils from Jakarta Commons Lang for nice columnar output for-
matting.
Later you’ll see a reason to look at the explanation of score. For now, it’s com-
mented out.

Since our sample data set consists of only a handful of documents, the sorting
examples use a query that returns all documents:

Term earliest = new Term("pubmonth", "190001");
Term latest = new Term("pubmonth", "201012");
RangeQuery allBooks = new RangeQuery(earliest, latest, true);

All books in our collection are in this publication month range. Next, the exam-
ple runner is constructed based on the index path provided as a system property:

Sort object encapsulates
sorting info

 b

Overloaded search
method

 c

toString output d

StringUtils provides
columnar output

 e

Explanation commented
out for now

 f

 b
 c
 d
 e

 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

152 CHAPTER 5
Advanced search techniques
String indexDir = System.getProperty("index.dir");

FSDirectory directory =
 FSDirectory.getDirectory(indexDir, false);
SortingExample example = new SortingExample(directory);

Now that you’ve seen how to use sorting, let’s explore various ways search results
can be sorted.

5.1.2 Sorting by relevance

Lucene sorts by decreasing relevance, also called score by default. Sorting by
score relevance works by either passing null as the Sort object or using the
default Sort behavior. Each of the following variants returns results in the default
score order. Sort.RELEVANCE is a shortcut to using new Sort():

example.displayHits(allBooks, null);
example.displayHits(allBooks, Sort.RELEVANCE);
example.displayHits(allBooks, new Sort());

There is overhead involved in using a Sort object, though, so stick to using
search(Query) or search(Query, null) if you want to sort by relevance. The out-
put of using Sort.RELEVANCE is as follows (notice the decreasing score column):

Results for: pubmonth:[190001 TO 201012] sorted by <score>,<doc>
Title pubmonth id score
A Modern Art of Education 198106 0 0.086743
 /education/pedagogy
Imperial Secrets of Health... 199401 1 0.086743
 /health/alternative/chinese
Tao Te Ching 道德經 198810 2 0.086743
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 197903 3 0.086743
 /technology/computers/ai
Mindstorms 198001 4 0.086743
 /technology/computers/programming/education
Java Development with Ant 200208 5 0.086743
 /technology/computers/programming
JUnit in Action 200310 6 0.086743
 /technology/computers/programming
Lucene in Action 200406 7 0.086743
 /technology/computers/programming
Tapestry in Action 200403 9 0.086743
 /technology/computers/programming
Extreme Programming Explained 199910 8 0.062685
 /technology/computers/programming/methodology
The Pragmatic Programmer 199910 10 0.062685
 /technology/computers/programming

The output of Sort’s toString() shows <score>,<doc>. Score and index order
are special types of sorting: The results are returned first in decreasing score
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Sorting search results 153
order and, when the scores are identical, subsorted by increasing document ID
order. Document ID order is the order in which the documents were indexed. In
our case, index order isn’t relevant, and order is unspecified (see section 8.4 on
the Ant <index> task, which is how we indexed our sample data).

 As an aside, you may wonder why the score of the last two books is different
from the rest. Our query was on a publication date range. Both of these books
have the same publication month. A RangeQuery expands, under the covers, into
a BooleanQuery matching any of the terms in the range. The document fre-
quency of the term 199910 in the pubmonth field is 2, which lowers the inverse
document frequency (IDF) factor for those documents, thereby decreasing the
score. We had the same curiosity when developing this example, and uncom-
menting the Explanation output in displayHits gave us the details to under-
stand this effect. See section 3.3. for more information on the scoring factors.

5.1.3 Sorting by index order

If the order documents were indexed is relevant, you can use Sort.INDEXORDER.
Note the increasing document ID column:

example.displayHits(allBooks, Sort.INDEXORDER);

Results for: pubmonth:[190001 TO 201012] sorted by <doc>
Title pubmonth id score
A Modern Art of Education 198106 0 0.086743
 /education/pedagogy
Imperial Secrets of Health... 199401 1 0.086743
 /health/alternative/chinese
Tao Te Ching 道德經 198810 2 0.086743
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 197903 3 0.086743
 /technology/computers/ai
Mindstorms 198001 4 0.086743
 /technology/computers/programming/education
Java Development with Ant 200208 5 0.086743
 /technology/computers/programming
JUnit in Action 200310 6 0.086743
 /technology/computers/programming
Lucene in Action 200406 7 0.086743
 /technology/computers/programming
Extreme Programming Explained 199910 8 0.062685
 /technology/computers/programming/methodology
Tapestry in Action 200403 9 0.086743
 /technology/computers/programming
The Pragmatic Programmer 199910 10 0.062685
 /technology/computers/programming
Licensed to Jason Ruesch <krhonos713@hotmail.com>

154 CHAPTER 5
Advanced search techniques
So far we’ve only sorted by score, which was already happening without using the
sorting facility, and document order, which is probably only marginally useful at
best. Sorting by one of our own fields is really what we’re after.

5.1.4 Sorting by a field

Sorting by a field first requires that you follow the rules for indexing a sortable
field, as detailed in section 2.6. Our category field was indexed as a single
Field.Keyword per document, allowing it to be used for sorting. To sort by a
field, you must create a new Sort object, providing the field name:

example.displayHits(allBooks, new Sort("category"));

Results for: pubmonth:[190001 TO 201012] sorted by "category",<doc>
Title pubmonth id score
A Modern Art of Education 198106 0 0.086743
 /education/pedagogy
Imperial Secrets of Health... 199401 1 0.086743
 /health/alternative/chinese
Tao Te Ching 道德經 198810 2 0.086743
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 197903 3 0.086743
 /technology/computers/ai
Java Development with Ant 200208 5 0.086743
 /technology/computers/programming
JUnit in Action 200310 6 0.086743
 /technology/computers/programming
Lucene in Action 200406 7 0.086743
 /technology/computers/programming
Tapestry in Action 200403 9 0.086743
 /technology/computers/programming
The Pragmatic Programmer 199910 10 0.062685
 /technology/computers/programming
Mindstorms 198001 4 0.086743
 /technology/computers/programming/education
Extreme Programming Explained 199910 8 0.062685
 /technology/computers/programming/methodology

The results now appear sorted by our category field in increasing alphabetical
order. Notice the sorted-by output: The Sort class itself automatically adds docu-
ment ID as the final sort field when a single field name is specified, so the sec-
ondary sort within category is by document ID.

5.1.5 Reversing sort order

The default sort direction for sort fields (including relevance and document ID)
is natural ordering. Natural order is descending for relevance but increasing for
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Sorting search results 155
all other fields. The natural order can be reversed per field. For example, here
we list books with the newest publications first:

example.displayHits(allBooks, new Sort("pubmonth", true));

Results for: pubmonth:[190001 TO 201012] sorted by "pubmonth"!,<doc>
Title pubmonth id score
Lucene in Action 200406 7 0.086743
 /technology/computers/programming
Tapestry in Action 200403 9 0.086743
 /technology/computers/programming
JUnit in Action 200310 6 0.086743
 /technology/computers/programming
Java Development with Ant 200208 5 0.086743
 /technology/computers/programming
Extreme Programming Explained 199910 8 0.062685
 /technology/computers/programming/methodology
The Pragmatic Programmer 199910 10 0.062685
 /technology/computers/programming
Imperial Secrets of Health... 199401 1 0.086743
 /health/alternative/chinese
Tao Te Ching 道德經 198810 2 0.086743
 /philosophy/eastern
A Modern Art of Education 198106 0 0.086743
 /education/pedagogy
Mindstorms 198001 4 0.086743
 /technology/computers/programming/education
Gödel, Escher, Bach: an Et... 197903 3 0.086743
 /technology/computers/ai

The exclamation point in sorted by "pubmonth"!,<doc> indicates that the pubmonth
field is being sorted in reverse natural order (descending publication months,
newest first). Note that the two books with the same publication month are sorted
in document id order.

5.1.6 Sorting by multiple fields

Implicitly we’ve been sorting by multiple fields, since the Sort object appends a
sort by document ID in appropriate cases. You can control the sort fields explic-
itly using an array of SortFields. This example uses category as a primary alpha-
betic sort, with results within category sorted by score; finally, books with equal
score within a category are sorted by decreasing publication month:

 example.displayHits(allBooks,
 new Sort(new SortField[]{
 new SortField("category"),
 SortField.FIELD_SCORE,
 new SortField("pubmonth", SortField.INT, true)
 }));
Licensed to Jason Ruesch <krhonos713@hotmail.com>

156 CHAPTER 5
Advanced search techniques
Results for: pubmonth:[190001 TO 201012]
 sorted by "category",<score>,"pubmonth"!
Title pubmonth id score
A Modern Art of Education 198106 0 0.086743
 /education/pedagogy
Imperial Secrets of Health... 199401 1 0.086743
 /health/alternative/chinese
Tao Te Ching 道德經 198810 2 0.086743
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 197903 3 0.086743
 /technology/computers/ai
Lucene in Action 200406 7 0.086743
 /technology/computers/programming
Tapestry in Action 200403 9 0.086743
 /technology/computers/programming
JUnit in Action 200310 6 0.086743
 /technology/computers/programming
Java Development with Ant 200208 5 0.086743
 /technology/computers/programming
The Pragmatic Programmer 199910 10 0.062685
 /technology/computers/programming
Mindstorms 198001 4 0.086743
 /technology/computers/programming/education
Extreme Programming Explained 199910 8 0.062685
 /technology/computers/programming/methodology

The Sort instance internally keeps an array of SortFields, but only in this exam-
ple have you seen it explicitly; the other examples used shortcuts to creating the
SortField array. A SortField holds the field name, a field type, and the reverse
order flag. SortField contains constants for several field types, including SCORE,
DOC, AUTO, STRING, INT, and FLOAT. SCORE and DOC are special types for sorting on
relevance and document ID. AUTO is the type used by each of our other examples,
which sort by a field name.

 The type of field is automatically detected as String, int, or float based
on the value of the first term in the field. If you’re using strings that may
appear as numeric in some fields, be sure to specify the type explicitly as Sort-
Field.STRING.

5.1.7 Selecting a sorting field type

By search time, the fields that can be sorted on and their corresponding types are
already set. Indexing time is when the decision about sorting capabilities should
be made; however, custom sorting implementations can do so at search time, as
you’ll see in section 6.1. Section 2.6 discusses index-time sorting design. By index-
ing an Integer.toString or Float.toString, sorting can be based on numeric val-
ues. In our example data, pubmonth was indexed as a String but is a valid,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using PhrasePrefixQuery 157
parsable Integer; thus it’s treated as such for sorting purposes unless specified as
SortField.STRING explicitly. Sorting by a numeric type consumes fewer memory
resources than by STRING; section 5.1.9 discusses performance issues further.

 It’s important to understand that you index numeric values this way to facili-
tate sorting on those fields, not to constrain a search on a range of values. The
numeric range query capability is covered in section 6.3.3; the padding tech-
nique will be necessary during indexing and searching in order to use numeric
fields for searching. All terms in an index are Strings; the sorting feature uses
the standard Integer and Float constructors to parse the string representations.

5.1.8 Using a nondefault locale for sorting

When you’re sorting on a SortField.STRING type, order is determined under the
covers using String.compareTo by default. However, if you need a different colla-
tion order, SortField lets you specify a locale. A Collator is determined for the
provided locale using Collator.getInstance(Locale), and the Collator.compare
method determines the sort order. There are two overloaded SortField con-
structors for use when you need to specify locale:

public SortField (String field, Locale locale)
public SortField (String field, Locale locale, boolean reverse)

Both of these constructors imply the SortField.STRING type because locale
applies only to string-type sorting, not to numerics.

5.1.9 Performance effect of sorting

Sorting comes at the expense of resources. More memory is needed to keep the
fields used for sorting available. For numeric types, each field being sorted for
each document in the index requires that four bytes be cached. For String types,
each unique term is also cached for each document. Only the actual fields used
for sorting are cached in this manner.

 Plan your system resources accordingly if you want to use the sorting capa-
bilities, knowing that sorting by a String is the most expensive type in terms
of resources.

5.2 Using PhrasePrefixQuery

The built-in PhrasePrefixQuery is definitely a niche query, but it’s potentially
useful. The name is a bit confusing because this query isn’t in any way related to
PrefixQuery. It is, however, closely related to PhraseQuery.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

158 CHAPTER 5
Advanced search techniques
 PhrasePrefixQuery allows multiple terms per position, effectively the same as
a BooleanQuery on multiple nonrequired PhraseQuery clauses. For example, sup-
pose we want to find all documents about speedy foxes, with quick or fast followed
by fox. One approach is to do a "quick fox" OR "fast fox" query. Another option
is to use PhrasePrefixQuery. In our example, two documents are indexed with
similar phrases. One document with uses “the quick brown fox jumped over the
lazy dog”, and the other uses “the fast fox hopped over the hound” as shown in
our test setUp() method:

public class PhrasePrefixQueryTest extends TestCase {
 private IndexSearcher searcher;

 protected void setUp() throws Exception {
 RAMDirectory directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(), true);
 Document doc1 = new Document();
 doc1.add(Field.Text("field",
 "the quick brown fox jumped over the lazy dog"));
 writer.addDocument(doc1);
 Document doc2 = new Document();
 doc2.add(Field.Text("field",
 "the fast fox hopped over the hound"));
 writer.addDocument(doc2);
 writer.close();

 searcher = new IndexSearcher(directory);
 }
}

Knowing that we want to find documents about speedy foxes, PhrasePrefix-
Query lets us match phrases very much like PhraseQuery, but with a twist: Each
term position of the query can have multiple terms. This has the same set of hits
as a BooleanQuery consisting of multiple PhraseQuerys combined with an OR
operator. The following test method demonstrates the mechanics of using the
PhrasePrefixQuery API by adding one or more terms to a PhrasePrefixQuery
instance in order:

public void testBasic() throws Exception {
 PhrasePrefixQuery query = new PhrasePrefixQuery();
 query.add(new Term[] {
 new Term("field", "quick"),
 new Term("field", "fast")
 });
 query.add(new Term("field", "fox"));

Any of these terms may be
in first position to match

Only one in
second position
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Querying on multiple fields at once 159
 Hits hits = searcher.search(query);
 assertEquals("fast fox match", 1, hits.length());

 query.setSlop(1);
 hits = searcher.search(query);
 assertEquals("both match", 2, hits.length());
}

Just as with PhraseQuery, the slop factor is supported. In testBasic(), the slop is
used to match “quick brown fox” in the second search; with the default slop of
zero, it doesn’t match. For completeness, here is a test illustrating the described
BooleanQuery, with a slop set for the phrase “quick fox”:

public void testAgainstOR() throws Exception {
 PhraseQuery quickFox = new PhraseQuery();
 quickFox.setSlop(1);
 quickFox.add(new Term("field", "quick"));
 quickFox.add(new Term("field", "fox"));

 PhraseQuery fastFox = new PhraseQuery();
 fastFox.add(new Term("field", "fast"));
 fastFox.add(new Term("field", "fox"));

 BooleanQuery query = new BooleanQuery();
 query.add(quickFox, false, false);
 query.add(fastFox, false, false);
 Hits hits = searcher.search(query);
 assertEquals(2, hits.length());
}

One difference between PhrasePrefixQuery and the BooleanQuery of Phrase-
Query’s approach is that the slop factor is applied globally with PhrasePrefix-
Query—it’s applied on a per-phrase basis with PhraseQuery.

 Of course, hard-coding the terms wouldn’t be realistic, generally speaking.
One possible use of a PhrasePrefixQuery would be to inject synonyms dynami-
cally into phrase positions, allowing for less precise matching. For example,
you could tie in the WordNet-based code (see section 8.6 for more on WordNet
and Lucene).

NOTE Lucene’s QueryParser doesn’t currently support PhrasePrefixQuery.

5.3 Querying on multiple fields at once

In our book data, several fields were indexed. Users may want to query for terms
regardless of which field they are in. One way to handle this is with MultiField-
Licensed to Jason Ruesch <krhonos713@hotmail.com>

160 CHAPTER 5
Advanced search techniques
QueryParser, which builds on QueryParser. Under the covers, it parses a query
expression using QueryParser’s static parse method for each field as the default
field and combines them into a BooleanQuery. The default operator OR is used in
the simplest parse method when adding the clauses to the BooleanQuery. For finer
control, the operator can be specified for each field as required (REQUIRED_FIELD),
prohibited (PROHIBITED_FIELD), or normal (NORMAL_FIELD), using the constants
from MultiFieldQueryParser.

 Listing 5.2 shows this heavier QueryParser variant in use. The testDefault-
Operator() method first parses the query "development" using both the title
and subjects fields. The test shows that documents match based on either of
those fields. The second test, testSpecifiedOperator(), sets the parsing to man-
date that documents must match the expression in all specified fields.

public class MultiFieldQueryParserTest extends LiaTestCase {
 public void testDefaultOperator() throws Exception {
 Query query = MultiFieldQueryParser.parse("development",
 new String[] {"title", "subjects"},
 new SimpleAnalyzer());

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(query);

 assertHitsIncludeTitle(hits, "Java Development with Ant");

 // has "development" in the subjects field
 assertHitsIncludeTitle(hits, "Extreme Programming Explained");
 }

 public void testSpecifiedOperator() throws Exception {
 Query query = MultiFieldQueryParser.parse("development",
 new String[] {"title", "subjects"},
 new int[] {MultiFieldQueryParser.REQUIRED_FIELD,
 MultiFieldQueryParser.REQUIRED_FIELD},
 new SimpleAnalyzer());

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(query);

 assertHitsIncludeTitle(hits, "Java Development with Ant");
 assertEquals("one and only one", 1, hits.length());
 }
}

Listing 5.2 MultiFieldQueryParser in action
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Span queries: Lucene’s new hidden gem 161
MultiFieldQueryParser has some limitations due to the way it uses QueryParser’s
static parse method. You can’t control any of the settings that QueryParser sup-
ports, and you’re stuck with the defaults such as default locale date parsing and
zero-slop default phrase queries.

NOTE Generally speaking, querying on multiple fields isn’t the best practice
for user-entered queries. More commonly, all words you want searched
are indexed into a contents or keywords field by combining various
fields. A synthetic contents field in our test environment uses this
scheme to put author and subjects together:

doc.add(Field.UnStored("contents", author + " " + subjects));

We used a space (" ") between author and subjects to separate words for
the analyzer. Allowing users to enter text in the simplest manner possi-
ble without the need to qualify field names generally makes for a less
confusing user experience.

If you choose to use MultiFieldQueryParser, be sure your queries are fabricated
appropriately using the QueryParser and Analyzer diagnostic techniques shown
in chapters 3 and 4. Plenty of odd interactions with analysis occur using Query-
Parser, and these are compounded using MultiFieldQueryParser.

5.4 Span queries: Lucene’s new hidden gem

Lucene 1.4 includes a new family of queries, all based on SpanQuery. A span in
this context is a starting and ending position in a field. Recall from section 4.2.1
that tokens emitted during the analysis process include a position increment
from the previous token. This position information, in conjunction with the new
SpanQuery subclasses, allow for even more query discrimination and sophistica-
tion, such as all documents where "quick fox" is near "lazy dog".

 Using the query types we’ve discussed thus far, it isn’t possible to formulate
such a query. Phrase queries could get close with something like "quick fox" AND
"lazy dog", but these phrases may be too distant from one another to be relevant
for our searching purposes. Happily, Doug Cutting graced us with his brilliance
once again and added span queries to Lucene’s core.

 Span queries track more than the documents that match: The individual
spans, perhaps more than one per field, are tracked. Contrasting with TermQuery,
which simply matches documents, for example, SpanTermQuery keeps track of the
positions of each of the terms that match.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

162 CHAPTER 5
Advanced search techniques
 There are five subclasses of the base SpanQuery, shown in table 5.1.

We’ll discuss each of these SpanQuery types within the context of a JUnit test case,
SpanQueryTest. In order to demonstrate each of these types, a bit of setup is
needed as well as some helper assert methods to make our later code clearer, as
shown in listing 5.3. We index two similar phrases in a field f as separate docu-
ments and create SpanTermQuerys for several of the terms for later use in our test
methods. In addition, we add three convenience assert methods to streamline
our examples.

public class SpanQueryTest extends TestCase {
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private IndexReader reader;

 private SpanTermQuery quick;
 private SpanTermQuery brown;
 private SpanTermQuery red;
 private SpanTermQuery fox;
 private SpanTermQuery lazy;
 private SpanTermQuery sleepy;
 private SpanTermQuery dog;
 private SpanTermQuery cat;
 private Analyzer analyzer;

 protected void setUp() throws Exception {
 directory = new RAMDirectory();

 analyzer = new WhitespaceAnalyzer();
 IndexWriter writer = new IndexWriter(directory,
 analyzer, true);

Table 5.1 SpanQuery family

SpanQuery type Description

SpanTermQuery Used in conjunction with the other span query types. On its own, it’s
functionally equivalent to TermQuery.

SpanFirstQuery Matches spans that occur within the first part of a field.

SpanNearQuery Matches spans that occur near one another.

SpanNotQuery Matches spans that don’t overlap one another.

SpanOrQuery Aggregates matches of span queries.

Listing 5.3 SpanQuery demonstration infrastructure
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Span queries: Lucene’s new hidden gem 163
 Document doc = new Document();
 doc.add(Field.Text("f",
 "the quick brown fox jumps over the lazy dog"));
 writer.addDocument(doc);

 doc = new Document();
 doc.add(Field.Text("f",
 "the quick red fox jumps over the sleepy cat"));
 writer.addDocument(doc);

 writer.close();

 searcher = new IndexSearcher(directory);
 reader = IndexReader.open(directory);

 quick = new SpanTermQuery(new Term("f", "quick"));
 brown = new SpanTermQuery(new Term("f", "brown"));
 red = new SpanTermQuery(new Term("f", "red"));
 fox = new SpanTermQuery(new Term("f", "fox"));
 lazy = new SpanTermQuery(new Term("f", "lazy"));
 sleepy = new SpanTermQuery(new Term("f", "sleepy"));
 dog = new SpanTermQuery(new Term("f", "dog"));
 cat = new SpanTermQuery(new Term("f", "cat"));
 }

 private void assertOnlyBrownFox(Query query)throws Exception {
 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 assertEquals("wrong doc", 0, hits.id(0));
 }

 private void assertBothFoxes(Query query) throws Exception {
 Hits hits = searcher.search(query);
 assertEquals(2, hits.length());
 }

 private void assertNoMatches(Query query) throws Exception {
 Hits hits = searcher.search(query);
 assertEquals(0, hits.length());
 }
}

With this necessary bit of setup out of the way, we can begin exploring span que-
ries. First we’ll ground ourselves with SpanTermQuery.

5.4.1 Building block of spanning, SpanTermQuery

Span queries need an initial leverage point, and SpanTermQuery is just that. Inter-
nally, a SpanQuery keeps track of its matches: a series of start/end positions for
Licensed to Jason Ruesch <krhonos713@hotmail.com>

164 CHAPTER 5
Advanced search techniques
each matching document. By itself, a SpanTermQuery matches documents just like
TermQuery does, but it also keeps track of position of the same terms that appear
within each document.

 Figure 5.1 illustrates the SpanTermQuery matches for this code:

public void testSpanTermQuery() throws Exception {
 assertOnlyBrownFox(brown);
 dumpSpans(brown);
}

The brown SpanTermQuery was created in setUp() because it will be used in other
tests that follow. We developed a method, dumpSpans, to visualize spans. The
dumpSpans method uses some lower-level SpanQuery API to navigate the spans; this
lower-level API probably isn’t of much interest to you other than for diagnostic
purposes, so we don’t elaborate further on it. Each SpanQuery subclass sports a
useful toString() for diagnostic purposes, which dumpSpans uses:

 private void dumpSpans(SpanQuery query) throws IOException {
 Spans spans = query.getSpans(reader);
 System.out.println(query + ":");
 int numSpans = 0;

 Hits hits = searcher.search(query);
 float[] scores = new float[2];
 for (int i = 0; i < hits.length(); i++) {
 scores[hits.id(i)] = hits.score(i);
 }

 while (spans.next()) {
 numSpans++;

 int id = spans.doc();
 Document doc = reader.document(id);

 // for simplicity - assume tokens are in sequential,
 // positions, starting from 0
 Token[] tokens = AnalyzerUtils.tokensFromAnalysis(
 analyzer, doc.get("f"));
 StringBuffer buffer = new StringBuffer();
 buffer.append(" ");
 for (int i = 0; i < tokens.length; i++) {

Figure 5.1 SpanTermQuery for brown
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Span queries: Lucene’s new hidden gem 165
 if (i == spans.start()) {
 buffer.append("<");
 }
 buffer.append(tokens[i].termText());
 if (i + 1 == spans.end()) {
 buffer.append(">");
 }
 buffer.append(" ");
 }
 buffer.append("(" + scores[id] + ") ");
 System.out.println(buffer);
// System.out.println(searcher.explain(query, id));
 }

 if (numSpans == 0) {
 System.out.println(" No spans");
 }
 System.out.println();
 }

The output of dumpSpans(brown) is

f:brown:
 the quick <brown> fox jumps over the lazy dog (0.22097087)

More interesting is the dumpSpans output from a SpanTermQuery for the:

dumpSpans(new SpanTermQuery(new Term("f", "the")));

f:the:
 <the> quick brown fox jumps over the lazy dog (0.18579213)
 the quick brown fox jumps over <the> lazy dog (0.18579213)
 <the> quick red fox jumps over the sleepy cat (0.18579213)
 the quick red fox jumps over <the> sleepy cat (0.18579213)

Not only were both documents matched, but also each document had two span
matches highlighted by the brackets. The basic SpanTermQuery is used as a build-
ing block of the other SpanQuery types.

5.4.2 Finding spans at the beginning of a field

To query for spans that occur within the first n positions of a field, use Span-
FirstQuery. Figure 5.2 illustrates a SpanFirstQuery.

Figure 5.2 SpanFirstQuery
Licensed to Jason Ruesch <krhonos713@hotmail.com>

166 CHAPTER 5
Advanced search techniques
This test shows nonmatching and matching queries:

public void testSpanFirstQuery() throws Exception {
 SpanFirstQuery sfq = new SpanFirstQuery(brown, 2);
 assertNoMatches(sfq);

 sfq = new SpanFirstQuery(brown, 3);
 assertOnlyBrownFox(sfq);
}

No matches are found in the first query because the range of 2 is too short to
find brown, but 3 is just long enough to cause a match in the second query (see
figure 5.2). Any SpanQuery can be used within a SpanFirstQuery, with matches for
spans that have an ending position in the first n (2 and 3 in this case) positions.
The resulting span matches are the same as the original SpanQuery spans, in this
case the same dumpSpans() output for brown as seen in section 5.4.1.

5.4.3 Spans near one another

A PhraseQuery (see section 3.4.5) matches documents that have terms near one
another, with a slop factor to allow for intermediate or reversed terms. Span-
NearQuery operates similarly to PhraseQuery, with some important differences.
SpanNearQuery matches spans that are within a certain number of positions from
one another, with a separate flag indicating whether the spans must be in the
order specified or can be reversed. The resulting matching spans span from the
start position of the first span sequentially to the ending position of the last
span. An example of a SpanNearQuery given three SpanTermQuery objects is shown
in figure 5.3.

 Using SpanTermQuery objects as the SpanQuerys in a SpanNearQuery is much
like a PhraseQuery. However, the SpanNearQuery slop factor is a bit less confusing
than the PhraseQuery slop factor because it doesn’t require at least two additional
positions to account for a reversed span. To reverse a SpanNearQuery, set the
inOrder flag (third argument to the constructor) to false. Listing 5.4 demon-
strates a few variations of SpanNearQuery and shows it in relation to PhraseQuery.

Figure 5.3 SpanNearQuery
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Span queries: Lucene’s new hidden gem 167
public void testSpanNearQuery() throws Exception {
 SpanQuery[] quick_brown_dog =
 new SpanQuery[]{quick, brown, dog};
 SpanNearQuery snq =
 new SpanNearQuery(quick_brown_dog, 0, true);
 assertNoMatches(snq);

 snq = new SpanNearQuery(quick_brown_dog, 4, true);
 assertNoMatches(snq);

 snq = new SpanNearQuery(quick_brown_dog, 5, true);
 assertOnlyBrownFox(snq);

 // interesting - even a sloppy phrase query would require
 // more slop to match
 snq = new SpanNearQuery(new SpanQuery[]{lazy, fox}, 3, false);
 assertOnlyBrownFox(snq);

 PhraseQuery pq = new PhraseQuery();
 pq.add(new Term("f", "lazy"));
 pq.add(new Term("f", "fox"));
 pq.setSlop(4);
 assertNoMatches(pq);

 pq.setSlop(5);
 assertOnlyBrownFox(pq);
}

Querying for these three terms in successive positions doesn’t match either doc-
ument.
Using the same terms with a slop of 4 positions still doesn’t result in a match.
With a slop of 5, the SpanNearQuery has a match.
The nested SpanTermQuery objects are in reverse order, so the inOrder flag is set
to false. A slop of only 3 is needed for a match.

Here we use a comparable PhraseQuery, although a slop of 4 still doesn’t match.
A slop of 5 is needed for a PhraseQuery to match.

We’ve only shown SpanNearQuery with nested SpanTermQuerys, but SpanNearQuery
allows for any SpanQuery type. A more sophisticated SpanNearQuery is demon-
strated later in listing 5.5 in conjunction with SpanOrQuery.

Listing 5.4 SpanNearQuery

Query for three
successive terms

 b

Same terms,
slop of 4

 c

SpanNearQuery
matches

 d

Nested SpanTermQuery
objects in reverse order

 e

Comparable
PhraseQuery

 f

PhraseQuery,
slop of 5

 g

 b

 c
 d
 e

 f
 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

168 CHAPTER 5
Advanced search techniques
5.4.4 Excluding span overlap from matches

The SpanNotQuery excludes matches where one SpanQuery overlaps another. The
following code demonstrates:

public void testSpanNotQuery() throws Exception {
 SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);
 assertBothFoxes(quick_fox);
 dumpSpans(quick_fox);

 SpanNotQuery quick_fox_dog = new SpanNotQuery(quick_fox, dog);
 assertBothFoxes(quick_fox_dog);
 dumpSpans(quick_fox_dog);

 SpanNotQuery no_quick_red_fox =
 new SpanNotQuery(quick_fox, red);
 assertOnlyBrownFox(no_quick_red_fox);
 dumpSpans(no_quick_red_fox);
}

The first argument to the SpanNotQuery constructor is a span to include, and the sec-
ond argument is the span to exclude. We’ve strategically added dumpSpans to clarify
what is going on. Here is the output with the Java query annotated above each:

SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);
spanNear([f:quick, f:fox], 1, true):
 the <quick brown fox> jumps over the lazy dog (0.18579213)
 the <quick red fox> jumps over the sleepy cat (0.18579213)

SpanNotQuery quick_fox_dog = new SpanNotQuery(quick_fox, dog);
spanNot(spanNear([f:quick, f:fox], 1, true), f:dog):
 the <quick brown fox> jumps over the lazy dog (0.18579213)
 the <quick red fox> jumps over the sleepy cat (0.18579213)

SpanNotQuery no_quick_red_fox =
 new SpanNotQuery(quick_fox, red);
spanNot(spanNear([f:quick, f:fox], 1, true), f:red):
 the <quick brown fox> jumps over the lazy dog (0.18579213)

The SpanNear query matched both documents because both have quick and fox
within one position of one another. The first SpanNotQuery, quick_fox_dog, contin-
ues to match both documents because there is no overlap with the quick_fox span
and dog. The second SpanNotQuery, no_quick_red_fox, excludes the second docu-
ment because red overlaps with the quick_fox span. Notice that the resulting span
matches are the original included span. The excluded span is only used to deter-
mine if there is an overlap and doesn’t factor into the resulting span matches.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Span queries: Lucene’s new hidden gem 169
5.4.5 Spanning the globe

Finally there is SpanOrQuery, which aggregates an array of SpanQuerys. Our exam-
ple query, in English, is all documents that have "quick fox" near "lazy dog" or
that have "quick fox" near "sleepy cat". The first clause of this query is shown in
figure 5.4. This single clause is SpanNearQuery nesting two SpanNearQuerys, which
each consist of two SpanTermQuerys.

 Our test case becomes a bit lengthier due to all the sub-SpanQuerys being built
upon (see listing 5.5). Using dumpSpans, we analyze the code in more detail.

public void testSpanOrQuery() throws Exception {
 SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);
 SpanNearQuery lazy_dog =
 new SpanNearQuery(new SpanQuery[]{lazy, dog}, 0, true);

 SpanNearQuery sleepy_cat =
 new SpanNearQuery(new SpanQuery[]{sleepy, cat}, 0, true);

 SpanNearQuery qf_near_ld =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, lazy_dog}, 3, true);
 assertOnlyBrownFox(qf_near_ld);
 dumpSpans(qf_near_ld);

 SpanNearQuery qf_near_sc =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, sleepy_cat}, 3, true);
 dumpSpans(qf_near_sc);

 SpanOrQuery or = new SpanOrQuery(
 new SpanQuery[]{qf_near_ld, qf_near_sc});
 assertBothFoxes(or);
 dumpSpans(or);
}

Listing 5.5 SpanOrQuery

Figure 5.4 One clause of the SpanOrQuery
Licensed to Jason Ruesch <krhonos713@hotmail.com>

170 CHAPTER 5
Advanced search techniques
We’ve used our handy dumpSpans a few times to allow us to follow the progression
as the final OR query is built. Here is the output, followed by our analysis of it:

SpanNearQuery qf_near_ld =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, lazy_dog}, 3, true);
spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:lazy, f:dog], 0, true)], 3, true):
 the <quick brown fox jumps over the lazy dog> (0.3321948)

SpanNearQuery qf_near_sc =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, sleepy_cat}, 3, true);
spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:sleepy, f:cat], 0, true)], 3, true):
 the <quick red fox jumps over the sleepy cat> (0.3321948)

SpanOrQuery or = new SpanOrQuery(
 new SpanQuery[]{qf_near_ld, qf_near_sc});
spanOr([spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:lazy, f:dog], 0, true)], 3, true),
 spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:sleepy, f:cat], 0, true)], 3, true)]):
 the <quick brown fox jumps over the lazy dog> (0.6643896)
 the <quick red fox jumps over the sleepy cat> (0.6643896)

Two SpanNearQuerys are created to match quick fox near lazy dog (qf_near_ld) and
quick fox near sleepy cat (qf_near_sc) using nested SpanNearQuerys made up of
SpanTermQuerys at the lowest level. Finally, these two SpanNearQuery instances are
combined within a SpanOrQuery, which aggregates all matching spans. Whew!

5.4.6 SpanQuery and QueryParser

QueryParser doesn’t currently support any of the SpanQuery types. Perhaps,
though, support will eventually be added. At least one member of the Lucene
community has created a query expression parser designed for span query
expressions that may be part of the Lucene Sandbox by the time you read this.
See the resources listed in appendix C for more details on how to tap into the
Lucene user community.

 Recall from section 3.4.5 that PhraseQuery is impartial to term order when
enough slop is specified. Interestingly, you can easily extend QueryParser to use
a SpanNearQuery with SpanTermQuery clauses instead, and force phrase queries to
only match fields with the terms in the same order as specified. We demonstrate
this technique in section 6.3.4.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Filtering a search 171
5.5 Filtering a search

Filtering is a mechanism of narrowing the search space, allowing only a subset of
the documents to be considered as possible hits. They can be used to implement
search-within-search features to successively search within a previous set of hits
or to constrain the document search space for security or external data reasons.
A security filter is a powerful example, allowing users to only see search results of
documents they own even if their query technically matches other documents
that are off limits; we provide an example of a security filter in section 5.5.3.

 You can filter any Lucene search, using the overloaded search methods that
accept a Filter parameter. There are three built-in Filter implementations:

■ DateFilter constrains the document space to only documents with a speci-
fied date field within a given range of dates.

■ QueryFilter uses the results of query as the searchable document space for
a new query.

■ CachingWrapperFilter is a decorator over another filter caching its results
to increase performance when used again.

Before you get concerned about mentions of caching results, rest assured that
it’s done with a tiny data structure (a BitSet) where each bit position represents
a document.

 Consider, also, the alternative to using a filter: aggregating required clauses
in a BooleanQuery. In this section, we’ll discuss each of the built-in filters as well
as the BooleanQuery alternative.

5.5.1 Using DateFilter

The date field type is covered in section 2.4 along with its caveats. Having a date
field, you filter as shown in testDateFilter() in listing 5.6. Our book data
indexes the last modified date of each book data file as a modified field, indexed
as a Field.Keyword(String, Date). We test the date range filter by using an all-
inclusive query, which by itself returns all documents.

public class FilterTest extends LiaTestCase {
 private Query allBooks;
 private IndexSearcher searcher;
 private int numAllBooks;

Listing 5.6 Using DateFilter
Licensed to Jason Ruesch <krhonos713@hotmail.com>

172 CHAPTER 5
Advanced search techniques
 protected void setUp() throws Exception {
 super.setUp();

 allBooks = new RangeQuery(new Term("pubmonth","190001"),
 new Term("pubmonth", "200512"),
 true);
 searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(allBooks);
 numAllBooks = hits.length();
 }

 public void testDateFilter() throws Exception {
 Date jan1 = parseDate("2004 Jan 01");
 Date jan31 = parseDate("2004 Jan 31");
 Date dec31 = parseDate("2004 Dec 31");

 DateFilter filter = new DateFilter("modified", jan1, dec31);

 Hits hits = searcher.search(allBooks, filter);
 assertEquals("all modified in 2004",
 numAllBooks, hits.length());

 filter = new DateFilter("modified", jan1, jan31);
 hits = searcher.search(allBooks, filter);
 assertEquals("none modified in January",
 0, hits.length());
 }
}

setUp() establishes a baseline count of all the books in our index, allowing for
comparisons when we use an all inclusive date filter.

The first parameter to both of the DateFilter constructors is the name of a date
field in the index. In our sample data this field name is modified; this field is the
last modified date of the source data file. The two constructors differ only in the
types of the second and third arguments: either java.util.Date (as in this exam-
ple) or long, take your pick.

Open-ended date range filtering
DateFilter also supports open-ended date ranges. To filter on dates with one
end of the range specified and the other end open, use one of the static factory
methods on DateFilter:

filter = DateFilter.Before("modified", endDate);
filter = DateFilter.After("modified", startDate);

setUp() establishes
baseline book count

 b

 b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Filtering a search 173
NOTE DateFilter ranges are inclusive of the beginning and ending dates. The
Before and After method names can be misleading given this fact. A
DateFilter.Before range is really an “on or before” filter.

As with the DateFilter constructors, Before and After methods accept either a
java.util.Date or a long.

 You can leave both ends of the date range open, although doing so is effec-
tively the same as using no filter—but with a performance hit for the compari-
sons. It’s trickier to leave both ends unconstrained, because the only methods to
get the special minimum and maximum dates return strings that must be con-
verted to a date representation, as shown here:

Filter filter = new DateFilter("modified",
 DateField.stringToDate(DateField.MIN_DATE_STRING()),
 DateField.stringToDate(DateField.MAX_DATE_STRING()));

It wouldn’t make much sense to hard-code such an open-ended DateFilter, but
these constants would be useful as special cases when you’re constructing a Date-
Filter dynamically.

DateFilter and caching
Filters are ideally suited when they’re reused for many searches, with the caveat
that their work be cached initially. DateFilter, however, doesn’t cache; and if you
use it repeatedly, it will make the date-filtering decision each time with a notice-
able performance degradation. When you reuse a DateFilter across multiple
searches, wrap it with a CachingWrappingFilter to benefit from caching the docu-
ment range that matches on the first search. See section 5.5.5 for details on cach-
ing a DateFilter.

5.5.2 Using QueryFilter

More generically useful than DateFilter is QueryFilter. QueryFilter uses the hits
of one query to constrain available documents from a subsequent search. The
result, a BitSet representing which documents were matched from the filtering
query, is cached to maximize performance for future searches that use the same
QueryFilter and IndexSearcher instances. Using a QueryFilter, we restrict the
documents searched to a specific category:

 public void testQueryFilter() throws Exception {
 TermQuery categoryQuery =
 new TermQuery(new Term("category", "/philosophy/eastern"));
Licensed to Jason Ruesch <krhonos713@hotmail.com>

174 CHAPTER 5
Advanced search techniques
 Filter categoryFilter = new QueryFilter(categoryQuery);

 Hits hits = searcher.search(allBooks, categoryFilter);
 assertEquals("only tao te ching", 1, hits.length());
 assertTrue(hits.score(0) < 1.0);
}

Here we’re searching for all the books (see setUp() in listing 5.6) but constraining
the search using a filter for a category which contains a single book. We explain
the last assertion of testQueryFilter() shortly, in section 5.5.4.

 QueryFilter can even replace DateFilter usage, although it requires a few
more lines of code and isn’t nearly as elegant looking. The following code dem-
onstrates date filtering using a QueryFilter on a RangeQuery using the same date
range and search as the first DateFilter example:

public void testQueryFilterWithRangeQuery() throws Exception {
 Date jan1 = parseDate("2004 Jan 01");
 Date dec31 = parseDate("2004 Dec 31");

 Term start = new Term("modified",
 DateField.dateToString(jan1));
 Term end = new Term("modified",
 DateField.dateToString(dec31));

 Query rangeQuery = new RangeQuery(start, end, true);
 Filter filter = new QueryFilter(rangeQuery);

 Hits hits = searcher.search(allBooks, filter);
 assertEquals("all of 'em", numAllBooks, hits.length());
}

If you’ll be hanging on to a filter instance for multiple searches, the caching of
QueryFilter will result in more efficient searches than a similar DateFilter,
which does no caching.

5.5.3 Security filters

Another example of document filtering constrains documents with security in
mind. Our example assumes documents are associated with an owner, which is
known at indexing time. We index two documents; both have the term info in
their keywords field, but each document has a different owner:

public class SecurityFilterTest extends TestCase {
 private RAMDirectory directory;

 protected void setUp() throws Exception {
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(), true);

Unshown method:
returns Date as
expected
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Filtering a search 175
 // Elwood
 Document document = new Document();
 document.add(Field.Keyword("owner", "elwood"));
 document.add(Field.Text("keywords", "elwoods sensitive info"));
 writer.addDocument(document);

 // Jake
 document = new Document();
 document.add(Field.Keyword("owner", "jake"));
 document.add(Field.Text("keywords", "jakes sensitive info"));
 writer.addDocument(document);

 writer.close();
 }
}

Using a TermQuery for info in the keywords field results in both documents found,
naturally. Suppose, though, that Jake is using the search feature in our applica-
tion, and only documents he owns should be searchable by him. Quite elegantly,
we can easily use a QueryFilter to constrain the search space to only documents
he is the owner of, as shown in listing 5.7.

public void testSecurityFilter() throws Exception {
 directory = new RAMDirectory();
 setUp();

 TermQuery query = new TermQuery(new Term("keywords", "info"));

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(query);
 assertEquals("Both documents match", 2, hits.length());

 QueryFilter jakeFilter = new QueryFilter(
 new TermQuery(new Term("owner", "jake")));

 hits = searcher.search(query, jakeFilter);
 assertEquals(1, hits.length());
 assertEquals("elwood is safe",
 "jakes sensitive info", hits.doc(0).get("keywords"));
}

This is a general TermQuery for info.
All documents containing info are returned.
Here, the filter constrains document searches to only documents owned by “jake”.
Only Jake’s document is returned, using the same info TermQuery.

Listing 5.7 Securing the search space with a filter

TermQuery for “info”
 b

Returns
documents
containing
“info”

 c

Filter d
Same
TermQuery,
constrained
results

 e

 b
 c
 d
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

176 CHAPTER 5
Advanced search techniques
If your security requirements are this straightforward, where documents can be
associated with users or roles during indexing, using a QueryFilter will work
nicely. However, this scenario is oversimplified for most needs; the ways that doc-
uments are associated with roles may be quite a bit more dynamic. QueryFilter is
useful only when the filtering constraints are present as field information within
the index itself. In section 6.4, we develop a more sophisticated filter implemen-
tation that leverages external information; this approach could be adapted to a
more dynamic custom security filter.

5.5.4 A QueryFilter alternative

You can constrain a query to a subset of documents another way, by combining
the constraining query to the original query as a required clause of a BooleanQuery.
There are a couple of important differences, despite the fact that the same docu-
ments are returned from both. QueryFilter caches the set of documents allowed,
probably speeding up successive searches using the same instance. In addition,
normalized Hits scores are unlikely to be the same. The score difference makes
sense when you’re looking at the scoring formula (see section 3.3, page 78). The
IDF factor may be dramatically different. When you’re using BooleanQuery aggre-
gation, all documents containing the terms are factored into the equation, whereas
a filter reduces the documents under consideration and impacts the inverse docu-
ment frequency factor.

 This test case demonstrates how to “filter” using BooleanQuery aggregation
and illustrates the scoring difference compared to testQueryFilter:

public void testFilterAlternative() throws Exception {
 TermQuery categoryQuery =
 new TermQuery(new Term("category", "/philosophy/eastern"));

 BooleanQuery constrainedQuery = new BooleanQuery();
 constrainedQuery.add(allBooks, true, false);
 constrainedQuery.add(categoryQuery, true, false);

 Hits hits = searcher.search(constrainedQuery);
 assertEquals("only tao te ching", 1, hits.length());
 assertTrue(hits.score(0) == 1.0);
}

The technique of aggregating a query in this manner works well with Query-
Parser parsed queries, allowing users to enter free-form queries yet restricting
the set of documents searched by an API-controlled query.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Filtering a search 177
5.5.5 Caching filter results

The biggest benefit from filters comes when they cache and are reused. DateFilter
doesn’t cache, but QueryFilter does. Wrapping a noncaching filter with Caching-
WrapperFilter takes care of caching automatically (internally using a WeakHash-
Map, so that dereferenced entries get garbage collected). Filters cache by using the
IndexReader as the key, which means searching should also be done with the same
instance of IndexReader to benefit from the cache. If you aren’t constructing
IndexReader yourself, but rather are creating an IndexSearcher from a directory,
you must use the same instance of IndexSearcher to benefit from the caching.
When index changes need to be reflected in searches, discard IndexSearcher and
IndexReader and reinstantiate.

 Strictly speaking, CachingWrapperFilter is a third built-in filter within Lucene,
although its purpose is to decouple filtering from caching and it doesn’t filter.
CachingWrapperFilter decorates an existing filter and caches the results in a sim-
ilar manner to QueryFilter. To demonstrate its usage, we return to the date-
range filtering example. We want to use DateFilter because the contortions of
using a QueryFilter for dates are ugly, but we’d like to benefit from caching to
improve performance:

public void testCachingWrapper() throws Exception {
 Date jan1 = parseDate("2004 Jan 01");
 Date dec31 = parseDate("2004 Dec 31");

 DateFilter dateFilter =
 new DateFilter("modified", jan1, dec31);

 cachingFilter =
 new CachingWrapperFilter(dateFilter);
 Hits hits = searcher.search(allBooks, cachingFilter);
 assertEquals("all of 'em", numAllBooks, hits.length());
}

Successive uses of the same CachingWrapperFilter instance with the same
IndexSearcher instance will bypass using the wrapped filter, instead using the
cached results.

5.5.6 Beyond the built-in filters

Lucene isn’t restricted to using the built-in filters. An additional filter found in
the Lucene Sandbox, ChainedFilter, allows for complex chaining of filters. We
cover it in section 8.8, page 304.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

178 CHAPTER 5
Advanced search techniques
 Writing custom filters allows external data to factor into search constraints;
however, a bit of detailed Lucene API know-how may be required to be highly
efficient. We cover writing custom filters in section 6.4, page 209.

 And if these filtering options aren’t enough, Lucene 1.4 adds another interest-
ing use of a filter. The FilteredQuery filters a query, like IndexSearcher’s
search(Query, Filter) can, except it is itself a query: Thus it can be used as a sin-
gle clause within a BooleanQuery. Using FilteredQuery seems to make sense only
when using custom filters, so we cover it along with custom filters in section 6.4.

5.6 Searching across multiple Lucene indexes

If your architecture consists of multiple Lucene indexes, but you need to search
across them using a single query with search results interleaving documents from
different indexes, MultiSearcher is for you. In high-volume usage of Lucene,
your architecture may partition sets of documents into different indexes.

5.6.1 Using MultiSearcher

With MultiSearcher, all indexes can be searched with the results merged in a spec-
ified (or descending-score) order. Using MultiSearcher is comparable to using
IndexSearcher, except that you hand it an array of IndexSearchers to search rather
than a single directory (so it’s effectively a decorator pattern and delegates most
of the work to the subsearchers).

 Listing 5.8 illustrates how to search two indexes that are split alphabetically
by keyword. The index is made up of animal names beginning with each letter of
the alphabet. Half the names are in one index, and half are in the other. A search
is performed with a range that spans both indexes, demonstrating that results
are merged together.

public class MultiSearcherTest extends TestCase {
 private IndexSearcher[] searchers;

 public void setUp() throws Exception {
 String[] animals = { "aardvark", "beaver", "coati",
 "dog", "elephant", "frog", "gila monster",
 "horse", "iguana", "javelina", "kangaroo",
 "lemur", "moose", "nematode", "orca",
 "python", "quokka", "rat", "scorpion",
 "tarantula", "uromastyx", "vicuna",
 "walrus", "xiphias", "yak", "zebra"};

Listing 5.8 Securing the search space with a filter
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Searching across multiple Lucene indexes 179
 Analyzer analyzer = new WhitespaceAnalyzer();

 Directory aTOmDirectory = new RAMDirectory();
 Directory nTOzDirectory = new RAMDirectory();

 IndexWriter aTOmWriter = new IndexWriter(aTOmDirectory,
 analyzer, true);
 IndexWriter nTOzWriter = new IndexWriter(nTOzDirectory,
 analyzer, true);

 for (int i=0; i < animals.length; i++) {
 Document doc = new Document();
 String animal = animals[i];
 doc.add(Field.Keyword("animal", animal));
 if (animal.compareToIgnoreCase("n") < 0) {
 aTOmWriter.addDocument(doc);
 } else {
 nTOzWriter.addDocument(doc);
 }
 }

 aTOmWriter.close();
 nTOzWriter.close();

 searchers = new IndexSearcher[2];
 searchers[0] = new IndexSearcher(aTOmDirectory);
 searchers[1] = new IndexSearcher(nTOzDirectory);
 }

 public void testMulti() throws Exception {

 MultiSearcher searcher = new MultiSearcher(searchers);

 Query query = new RangeQuery(new Term("animal", "h"),
 new Term("animal", "t"), true);

 Hits hits = searcher.search(query);
 assertEquals("tarantula not included", 12, hits.length());
 }
}

This code uses two indexes.
The first half of the alphabet is indexed to one index, and the other half is
indexed to the other index.
This query spans documents in both indexes.

The inclusive RangeQuery matched animals that began with h through animals
that began with t, with the matching documents coming from both indexes.

Two
indexes

 b

Indexing halves
of the alphabet

 c

Query
spans both
indexes

 d

 b
 c

 d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

180 CHAPTER 5
Advanced search techniques
5.6.2 Multithreaded searching using ParallelMultiSearcher

A multithreaded version of MultiSearcher called ParallelMultiSearcher was
added to Lucene 1.4. A search operation spins a thread for each Searchable and
waits for them all to finish. The basic search and search with filter options are
parallelized, but searching with a HitCollector has not yet been parallelized.

 Whether you’ll see performance gains using ParallelMultiSearcher greatly
depends on your architecture. Supposedly, if the indexes reside on different
physical disks and you’re able to take advantage of multiple CPUs, there may be
improved performance; but in our tests with a single CPU, single physical disk,
and multiple indexes, performance with MultiSearcher was slightly better than
ParallelMultiSearcher.

 Using a ParallelMultiSearcher is identical to using MultiSearcher. An exam-
ple, using ParallelMultiSearcher remotely, is shown in listing 5.9.

Searching multiple indexes remotely
Lucene includes remote index searching capability through Remote Method
Invocation (RMI). There are numerous other alternatives to exposing search
remotely, such as through web services. This section focuses solely on Lucene’s
built-in capabilities; other implementations are left to your innovation (you can
also borrow ideas from projects like Nutch; see section 10.1).

 An RMI server binds to an instance of RemoteSearchable, which is an imple-
mentation of the Searchable interface just like IndexSearcher and MultiSearcher.
The server-side RemoteSearchable delegates to a concrete Searchable, such as a
regular IndexSearcher instance.

 Clients to the RemoteSearchable invoke search methods identically to search-
ing through an IndexSearcher or MultiSearcher, as shown throughout this chap-
ter. Figure 5.5 illustrates one possible remote-searching configuration.

 Other configurations are possible, depending on your needs. The client
could instantiate a ParallelMultiSearcher over multiple remote (and/or local)
indexes, and each server could search only a single index.
In order to demonstrate RemoteSearchable, we put together a multi-index server
configuration, similar to figure 5.5, using both MultiSearcher and ParallelMulti-
Searcher in order to compare performance. We split the WordNet index (a data-
base of nearly 40,000 words and their synonyms) into 26 indexes representing A
through Z, with each word in the index corresponding to its first letter. The server
exposes two RMI client-accessible RemoteSearchables, allowing clients to access
either the serial MultiSearcher or the ParallelMultiSearcher.

 SearchServer is shown in listing 5.9.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Searching across multiple Lucene indexes 181
public class SearchServer {
 private static final String ALPHABET =
 "abcdefghijklmnopqrstuvwxyz";

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: SearchServer <basedir>");
 System.exit(-1);
 }

 String basedir = args[0];
 Searchable[] searchables = new Searchable[ALPHABET.length()];
 for (int i = 0; i < ALPHABET.length(); i++) {
 searchables[i] = new IndexSearcher(
 new File(basedir,
 "" + ALPHABET.charAt(i)).getAbsolutePath());
 }

Figure 5.5
Remote searching
through RMI, with the
server searching
multiple indexes

Listing 5.9 SearchServer: a remote search server using RMI

Indexes under basedir b

Open IndexSearcher
for each index

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

182 CHAPTER 5
Advanced search techniques
 LocateRegistry.createRegistry(1099);

 Searcher multiSearcher = new MultiSearcher(searchables);
 RemoteSearchable multiImpl =
 new RemoteSearchable(multiSearcher);
 Naming.rebind("//localhost/LIA_Multi", multiImpl);

 Searcher parallelSearcher =
 new ParallelMultiSearcher(searchables);
 RemoteSearchable parallelImpl =
 new RemoteSearchable(parallelSearcher);
 Naming.rebind("//localhost/LIA_Parallel", parallelImpl);

 System.out.println("Server started");
 }
}

Twenty-six indexes reside under the basedir, each named for a letter of the
alphabet.
A plain IndexSearcher is opened for each index.
An RMI registry is created.
A MultiSearcher over all indexes, named LIA_Multi, is created and published
through RMI.
A ParallelMultiSearcher over the same indexes, named LIA_Parallel, is created
and published.

Querying through SearchServer remotely involves mostly RMI glue, as shown in
SearchClient in listing 5.10. Because our access to the server is through a Remote-
Searchable, which is a lower-level API than we want to work with, we wrap it inside
a MultiSearcher. Why MultiSearcher? Because it’s a wrapper over Searchables,
making it as friendly to use as IndexSearcher.

public class SearchClient {
 private static HashMap searcherCache = new HashMap();

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: SearchClient <query>");
 System.exit(-1);
 }

 String word = args[0];

Create RMI registry d

MultiSearcher
over all
indexes

 e

ParallelMultiSearcher
over all indexes

 f

 b

 c
 d
 e

 f

Listing 5.10 SearchClient: accesses the RMI-exposed objects from
SearchServer
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Searching across multiple Lucene indexes 183
 for (int i=0; i < 5; i++) {
 search("LIA_Multi", word);
 search("LIA_Parallel", word);
 }
 }

 private static void search(String name, String word)
 throws Exception {
 TermQuery query = new TermQuery(new Term("word", word));

 MultiSearcher searcher =
 (MultiSearcher) searcherCache.get(name);

 if (searcher == null) {
 searcher =
 new MultiSearcher(new Searchable[]{lookupRemote(name)});
 searcherCache.put(name, searcher);
 }

 long begin = new Date().getTime();
 Hits hits = searcher.search(query);
 long end = new Date().getTime();

 System.out.print("Searched " + name +
 " for '" + word + "' (" + (end - begin) + " ms): ");

 if (hits.length() == 0) {
 System.out.print("<NONE FOUND>");
 }

 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);
 String[] values = doc.getValues("syn");
 for (int j = 0; j < values.length; j++) {
 System.out.print(values[j] + " ");
 }
 }
 System.out.println();
 System.out.println();

 // DO NOT CLOSE searcher!
 }

 private static Searchable lookupRemote(String name)
 throws Exception {
 return (Searchable) Naming.lookup("//localhost/" + name);
 }
}

Multiple
identical
searches

 b

Cache searchers c

Wrap Searchable in
MultiSearcher

 d

Time
searching

 e

Don’t close searcher f

RMI lookup
 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

184 CHAPTER 5
Advanced search techniques
We perform multiple identical searches to warm up the JVM and get a good sam-
ple of response time. The MultiSearcher and ParallelMultiSearcher are each
searched.
The searchers are cached, to be as efficient as possible.
The remote Searchable is located and wrapped in a MultiSearcher.
The searching process is timed.
We don’t close the searcher because it closes the remote searcher, thereby prohib-
iting future searches.
Look up the remote interface.

WARNING Don’t close() the RemoteSearchable or its wrapping MultiSearcher.
Doing so will prevent future searches from working because the server
side will have closed its access to the index.

Let’s see our remote searcher in action. For demonstration purposes, we ran it
on a single machine in separate console windows. The server is started:

% java lia.advsearching.remote.SearchServer path/to/indexes/
Server started

The client connects, searches, outputs the results several times, and exits:

% java lia.advsearching.remote.SearchClient hello
Searched LIA_Multi for 'hello' (259 ms): hullo howdy hi

Searched LIA_Parallel for 'hello' (40 ms): hullo howdy hi

Searched LIA_Multi for 'hello' (17 ms): hullo howdy hi

Searched LIA_Parallel for 'hello' (83 ms): hullo howdy hi

Searched LIA_Multi for 'hello' (11 ms): hullo howdy hi

Searched LIA_Parallel for 'hello' (41 ms): hullo howdy hi

Searched LIA_Multi for 'hello' (30 ms): hullo howdy hi

Searched LIA_Parallel for 'hello' (50 ms): hullo howdy hi

Searched LIA_Multi for 'hello' (15 ms): hullo howdy hi

Searched LIA_Parallel for 'hello' (47 ms): hullo howdy hi

It’s interesting to note the search times reported by each type of server-side
searcher. The ParallelMultiSearcher is slower than the MultiSearcher in our
environment (single CPU, single disk). Also, you can see the reason why we chose
to run the search multiple times: The first search took much longer relative to

 b

 c
 d
 e
 f

 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Leveraging term vectors 185
the successive searches, which is probably due to JVM warmup. These results
point out that performance testing is tricky business, but it’s necessary in many
environments. Because of the strong effect your environment has on perfor-
mance, we urge you to perform your own tests with your own environment. Per-
formance testing is covered in more detail in section 6.5, page 213.

 If you choose to expose searching through RMI in this manner, you’ll likely
want to create a bit of infrastructure to coordinate and manage issues such as
closing an index and how the server deals with index updates (remember, the
searcher sees a snapshot of the index and must be reopened to see changes).

5.7 Leveraging term vectors

Term vectors are a new feature in Lucene 1.4, but they aren’t new as an informa-
tion retrieval concept. A term vector is a collection of term-frequency pairs. Most
of us probably can’t envision vectors in hyperdimensional space, so for visualiza-
tion purposes, let’s look at two documents that contain only the terms cat and
dog. These words appear various times in each document. Plotting the term fre-
quencies of each document in X, Y coordinates looks something like figure 5.6.
What gets interesting with term vectors is the angle between them, as you’ll see
in more detail in section 5.7.2.

 To enable term-vector storage, during indexing you enable the store term
vectors attribute on the desired fields. Field.Text and Field.Unstored have
additional overloaded methods with a boolean storeTermVector flag in the signa-
ture. Setting this value to true turns on the optional term vector support for the
field, as we did for the subject field when indexing our book data (see figure 5.7).

Figure 5.6
Term vectors for two documents
containing the terms cat and dog
Licensed to Jason Ruesch <krhonos713@hotmail.com>

186 CHAPTER 5
Advanced search techniques
Retrieving term vectors for a field in a given document by ID requires a call to an
IndexReader method:

TermFreqVector termFreqVector =
 reader.getTermFreqVector(id, "subject");

A TermFreqVector instance has several methods for retrieving the vector infor-
mation, primarily as matching arrays of Strings and ints (the term value and
frequency in the field, respectively). You can use term vectors for some interest-
ing effects, such as finding documents “like” a particular document, which is an
example of latent semantic analysis. We built a BooksLikeThis feature as well as a
proof-of-concept categorizer that can tell us the most appropriate category for a
new book, as you’ll see in the following sections.

5.7.1 Books like this

It would be nice to offer other choices to the customers of our bookstore when
they’re viewing a particular book. The alternatives should be related to the origi-
nal book, but associating alternatives manually would be labor-intensive and
would require ongoing effort to keep up to date. Instead, we use Lucene’s bool-
ean query capability and the information from one book to look up other books
that are similar. Listing 5.11 demonstrates a basic approach for finding books
like each one in our sample data.

public class BooksLikeThis {

 public static void main(String[] args) throws IOException {
 String indexDir = System.getProperty("index.dir");

 FSDirectory directory =
 FSDirectory.getDirectory(indexDir, false);

 IndexReader reader = IndexReader.open(directory);
 int numDocs = reader.maxDoc();

 BooksLikeThis blt = new BooksLikeThis(reader);

Figure 5.7 Enabling term vectors during indexing

Listing 5.11 Books like this
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Leveraging term vectors 187
 for (int i = 0; i < numDocs; i++) {
 System.out.println();
 Document doc = reader.document(i);
 System.out.println(doc.get("title"));

 Document[] docs = blt.docsLike(i, 10);
 if (docs.length == 0) {
 System.out.println(" None like this");
 }
 for (int j = 0; j < docs.length; j++) {
 Document likeThisDoc = docs[j];
 System.out.println(" -> " + likeThisDoc.get("title"));
 }
 }
 }

 private IndexReader reader;
 private IndexSearcher searcher;

 public BooksLikeThis(IndexReader reader) {
 this.reader = reader;
 searcher = new IndexSearcher(reader);
 }

 public Document[] docsLike(int id, int max) throws IOException {
 Document doc = reader.document(id);

 String[] authors = doc.getValues("author");
 BooleanQuery authorQuery = new BooleanQuery();
 for (int i = 0; i < authors.length; i++) {
 String author = authors[i];
 authorQuery.add(new TermQuery(new Term("author", author)),
 false, false);
 }
 authorQuery.setBoost(2.0f);

 TermFreqVector vector =
 reader.getTermFreqVector(id, "subject");

 BooleanQuery subjectQuery = new BooleanQuery();
 for (int j = 0; j < vector.size(); j++) {
 TermQuery tq = new TermQuery(
 new Term("subject", vector.getTerms()[j]));
 subjectQuery.add(tq, false, false);
 }

 BooleanQuery likeThisQuery = new BooleanQuery();
 likeThisQuery.add(authorQuery, false, false);
 likeThisQuery.add(subjectQuery, false, false);

Look up books
like this c
Iterate over
every book

 b

Boosts books by
same author

 d

Use terms from
“subject” term
vectors

 e

Create final
query

 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

188 CHAPTER 5
Advanced search techniques
 // exclude myself
 likeThisQuery.add(new TermQuery(
 new Term("isbn", doc.get("isbn"))), false, true);

 //System.out.println(" Query: " +
 // likeThisQuery.toString("contents"));
 Hits hits = searcher.search(likeThisQuery);
 int size = max;
 if (max > hits.length()) size = hits.length();

 Document[] docs = new Document[size];
 for (int i = 0; i < size; i++) {
 docs[i] = hits.doc(i);
 }

 return docs;
 }

}

As an example, we iterate over every book document in the index and find books
like each one.
Here we look up books that are like this one.
Books by the same author are considered alike and are boosted so they will likely
appear before books by other authors.
Using the terms from the subject term vectors, we add each to a boolean query.
We combine the author and subject queries into a final boolean query.
We exclude the current book, which would surely be the best match given the
other criteria, from consideration.

In d, we used a different way to get the value of the author field. It was indexed
as multiple fields, in the manner (shown in more detail in section 8.4, page 284),
where the original author string is a comma-separated list of author(s) of a book:

 String[] authors = author.split(",");
 for (int i = 0; i < authors.length; i++) {
 doc.add(Field.Keyword("author", authors[i]));
 }

The output is interesting, showing how our books are connected through author
and subject:

A Modern Art of Education
 -> Mindstorms

Imperial Secrets of Health and Longevity
 None like this

Exclude
current book

 g

 b

 c
 d

 e
 f
 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Leveraging term vectors 189
Tao Te Ching 道德經

 None like this

Gödel, Escher, Bach: an Eternal Golden Braid
 None like this

Mindstorms
 -> A Modern Art of Education

Java Development with Ant
 -> Lucene in Action
 -> JUnit in Action
 -> Extreme Programming Explained

JUnit in Action
 -> Java Development with Ant

Lucene in Action
 -> Java Development with Ant

Extreme Programming Explained
 -> The Pragmatic Programmer
 -> Java Development with Ant

Tapestry in Action
 None like this

The Pragmatic Programmer
 -> Extreme Programming Explained

If you’d like to see the actual query used for each, uncomment the output lines
toward the end of the docsLike.

 The books-like-this example could have been done without term vectors, and
we aren’t really using them as vectors in this case. We’ve only used the conve-
nience of getting the terms for a given field. Without term vectors, the subject
field could have been reanalyzed or indexed such that individual subject terms
were added separately in order to get the list of terms for that field (see section 8.4
for discussion of how the sample data was indexed). Our next example also uses
the frequency component to a term vector in a much more sophisticated manner.

5.7.2 What category?

Each book in our index is given a single primary category: For example, this book
is categorized as “/technology/computers/programming”. The best category
placement for a new book may be relatively obvious, or (more likely) several pos-
sible categories may seem reasonable. You can use term vectors to automate the
decision. We’ve written a bit of code that builds a representative subject vector for
Licensed to Jason Ruesch <krhonos713@hotmail.com>

190 CHAPTER 5
Advanced search techniques
each existing category. This representative, archetypical, vector is the sum of all
vectors for each document’s subject field vector.

 With these representative vectors precomputed, our end goal is a calculation
that can, given some subject keywords for a new book, tell us what category is the
best fit. Our test case uses two example subject strings:

public void testCategorization() throws Exception {
 assertEquals("/technology/computers/programming/methodology",
 getCategory("extreme agile methodology"));
 assertEquals("/education/pedagogy",
 getCategory("montessori education philosophy"));

}

The first assertion says that, based on our sample data, if a new book has
“extreme agile methodology” keywords in its subject, the best category fit is
“/technology/computers/programming/methodology”. The best category is
determined by finding the closest category angle-wise in vector space to the
new book’s subject.

 The test setUp() builds vectors for each category:

public class CategorizerTest extends LiaTestCase {
 Map categoryMap;

 protected void setUp() throws Exception {
 super.setUp();

 categoryMap = new TreeMap();

 buildCategoryVectors();
 //dumpCategoryVectors();
 }

 // . . .
}

Our code builds category vectors by walking every document in the index and
aggregating book subject vectors into a single vector for the book’s associated cat-
egory. Category vectors are stored in a Map, keyed by category name. The value of
each item in the category map is another map keyed by term, with the value an
Integer for its frequency:

private void buildCategoryVectors() throws IOException {
 IndexReader reader = IndexReader.open(directory);

 int maxDoc = reader.maxDoc();

 for (int i = 0; i < maxDoc; i++) {
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Leveraging term vectors 191
 if (!reader.isDeleted(i)) {
 Document doc = reader.document(i);
 String category = doc.get("category");

 Map vectorMap = (Map) categoryMap.get(category);
 if (vectorMap == null) {
 vectorMap = new TreeMap();
 categoryMap.put(category, vectorMap);
 }

 TermFreqVector termFreqVector =
 reader.getTermFreqVector(i, "subject");

 addTermFreqToMap(vectorMap, termFreqVector);
 }
 }
}

A book’s term frequency vector is added to its category vector in addTermFreq-
ToMap. The arrays returned by getTerms() and getTermFrequencies() align with
one another such that the same position in each refers to the same term:

private void addTermFreqToMap(Map vectorMap,
 TermFreqVector termFreqVector) {
 String[] terms = termFreqVector.getTerms();
 int[] freqs = termFreqVector.getTermFrequencies();

 for (int i = 0; i < terms.length; i++) {
 String term = terms[i];

 if (vectorMap.containsKey(term)) {
 Integer value = (Integer) vectorMap.get(term);
 vectorMap.put(term,
 new Integer(value.intValue() + freqs[i]));
 } else {
 vectorMap.put(term, new Integer(freqs[i]));
 }
 }
}

That was the easy part—building the category vector maps—because it only
involved addition. Computing angles between vectors, however, is more involved
mathematically. In the simplest two-dimensional case, as shown earlier in fig-
ure 5.6, two categories (A and B) have unique term vectors based on aggregation
(as we’ve just done). The closest category, angle-wise, to a new book’s subjects is
the match we’ll choose. Figure 5.8 shows the equation for computing an angle
between two vectors.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

192 CHAPTER 5
Advanced search techniques
Our getCategory method loops through all categories, computing the angle
between each category and the new book. The smallest angle is the closest
match, and the category name is returned:

private String getCategory(String subject) {
 String[] words = subject.split(" ");

 Iterator categoryIterator = categoryMap.keySet().iterator();
 double bestAngle = Double.MAX_VALUE;
 String bestCategory = null;

 while (categoryIterator.hasNext()) {
 String category = (String) categoryIterator.next();

 double angle = computeAngle(words, category);
 if (angle < bestAngle) {
 bestAngle = angle;
 bestCategory = category;
 }
 }

 return bestCategory;
}

We assume that the subject string is in a whitespace-separated form and that
each word occurs only once. The angle computation takes these assumptions
into account to simplify a part of the computation. Finally, computing the angle
between an array of words and a specific category is done in computeAngle,
shown in listing 5.12.

private double computeAngle(String[] words, String category) {
 Map vectorMap = (Map) categoryMap.get(category);

 int dotProduct = 0;
 int sumOfSquares = 0;
 for (int i = 0; i < words.length; i++) {
 String word = words[i];
 int categoryWordFreq = 0;

 if (vectorMap.containsKey(word)) {
 categoryWordFreq =
 ((Integer) vectorMap.get(word)).intValue();
 }

Listing 5.12 Computing term vector angles for a new book against a given category

Figure 5.8
Formula for computing the
angle between two vectors
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 193
 dotProduct += categoryWordFreq;
 sumOfSquares += categoryWordFreq * categoryWordFreq;
 }

 double denominator;
 if (sumOfSquares == words.length) {
 denominator = sumOfSquares;
 } else {
 denominator = Math.sqrt(sumOfSquares) *
 Math.sqrt(words.length);
 }

 double ratio = dotProduct / denominator;

 return Math.acos(ratio);
}

The calculation is optimized with the assumption that each word in the words
array has a frequency of 1.
We multiply the square root of N by the square root of N is N. This shortcut pre-
vents a precision issue where the ratio could be greater than 1 (which is an illegal
value for the inverse cosine function).

You should be aware that computing term vector angles between two documents
or, in this case, between a document and an archetypical category, is computation-
intensive. It requires square-root and inverse cosine calculations and may be pro-
hibitive in high-volume indexes.

5.8 Summary

This chapter has covered some diverse ground, highlighting Lucene’s additional
built-in search features. Sorting is a dramatic new enhancement that gives you
control over the ordering of search results. The new SpanQuery family leverages
term-position information for greater searching precision. Filters constrain doc-
ument search space, regardless of the query. Lucene includes support for multiple
(including parallel) and remote index searching, giving developers a head start
on distributed and scalable architectures. And finally, the new term vector feature
enables interesting effects, such as “like this” term vector angle calculations.

 Is this the end of the searching story? Not quite. Lucene also includes several
ways to extend its searching behavior, such as custom sorting, filtering, and
query expression parsing, which we cover in the following chapter.

Assume each word has frequency 1 b

Shortcut to prevent
precision issue

 c

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Extending search

This chapter covers
■ Creating a custom sort
■ Using a HitCollector
■ Customizing QueryParser
■ Testing performance
194

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using a custom sort method 195
Just when you thought we were done with searching, here we are again with even
more on the topic! Chapter 3 discussed the basics of Lucene’s built-in capabili-
ties, and chapter 5 went well beyond the basics into Lucene’s more advanced
searching features. In those two chapters, we explored only the built-in features.
Lucene also has several nifty extension points.

 Our first custom extension demonstrates Lucene’s custom sorting hooks,
allowing us to implement a search that returns results in ascending geographic
proximity order from a user’s current location. Next, implementing your own
HitCollector bypasses Hits; this is effectively an event listener when matches are
detected during searches.

 QueryParser is extensible in several useful ways, such as for controlling date
parsing and numeric formatting, as well as for disabling potential performance
degrading queries such as wildcard and fuzzy queries. Custom filters allow infor-
mation from outside the index to factor into search constraints, such as factoring
some information present only in a relational database into Lucene searches.

 And finally, we explore Lucene performance testing using JUnitPerf. The
performance-testing example we provide is a meaningful example of testing
actually becoming a design tool rather than an after-the-fact assurance test.

6.1 Using a custom sort method

If sorting by score, ID, or field values is insufficient for your needs, Lucene lets
you implement a custom sorting mechanism by providing your own implementa-
tion of the SortComparatorSource interface. Custom sorting implementations are
most useful in situations when the sort criteria can’t be determined during
indexing.

 An interesting idea for a custom sorting mechanism is to order search results
based on geographic distance from a given location.1 The given location is only
known at search time. We’ve created a simplified demonstration of this concept
using the important question, “What Mexican food restaurant is nearest to me?”
Figure 6.1 shows a sample of restaurants and their fictitious grid coordinates on
a sample 10x10 grid.2

 The test data is indexed as shown in listing 6.1, with each place given a name,
location in X and Y coordinates, and a type. The type field allows our data to

1 Thanks to Tim Jones (the contributor of Lucene’s sort capabilities) for the inspiration.
2 These are real (tasty!) restaurants in Tucson, Arizona, a city Erik used to call home.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

196 CHAPTER 6
Extending search
accommodate other types of businesses and could allow us to filter search results
to specific types of places.

public class DistanceSortingTest extends TestCase {
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private Query query;

 protected void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(directory, new WhitespaceAnalyzer(), true);
 addPoint(writer, "El Charro", "restaurant", 1, 2);
 addPoint(writer, "Cafe Poca Cosa", "restaurant", 5, 9);

Listing 6.1 Indexing geographic data

Figure 6.1 Which Mexican restaurant is closest to home (at 0,0) or work (at 10,10)?
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using a custom sort method 197
 addPoint(writer, "Los Betos", "restaurant", 9, 6);
 addPoint(writer, "Nico's Taco Shop", "restaurant", 3, 8);

 writer.close();

 searcher = new IndexSearcher(directory);

 query = new TermQuery(new Term("type","restaurant"));
 }

 private void addPoint(IndexWriter writer,
 String name, String type, int x, int y)
 throws IOException {
 Document doc = new Document();
 doc.add(Field.Keyword("name", name));
 doc.add(Field.Keyword("type", type));
 doc.add(Field.Keyword("location", x+","+y));
 writer.addDocument(doc);
 }

}

The coordinates are indexed into a single location field as a string x, y. The loca-
tion could be encoded in numerous ways, but we opted for the simplest approach
for this example. Next we write a test that we use to assert that our sorting imple-
mentation works appropriately:

public void testNearestRestaurantToHome() throws Exception {
 Sort sort = new Sort(new SortField("location",
 new DistanceComparatorSource(0, 0)));

 Hits hits = searcher.search(query, sort);

 assertEquals("closest",
 "El Charro", hits.doc(0).get("name"));
 assertEquals("furthest",
 "Los Betos", hits.doc(3).get("name"));
}

Home is at coordinates (0,0). Our test has shown that the first and last docu-
ments in the Hits returned are the ones closest and furthest from home. Muy
bien! Had we not used a sort, the documents would have been returned in inser-
tion order, since the score of each hit is equivalent for the restaurant-type query.
The distance computation, using the basic distance formula, is done under our
custom DistanceComparatorSource, shown in listing 6.2.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

198 CHAPTER 6
Extending search
public class DistanceComparatorSource
 implements SortComparatorSource {
 private int x;
 private int y;

 public DistanceComparatorSource(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public ScoreDocComparator newComparator(
 IndexReader reader, String fieldname) throws IOException {
 return new DistanceScoreDocLookupComparator(
 reader, fieldname, x, y);
 }

 private static class DistanceScoreDocLookupComparator
 implements ScoreDocComparator {
 private float[] distances;

 public DistanceScoreDocLookupComparator(IndexReader reader,
 String fieldname, int x, int y) throws IOException {

 final TermEnum enumerator =
 reader.terms(new Term(fieldname, ""));
 distances = new float[reader.maxDoc()];
 if (distances.length > 0) {
 TermDocs termDocs = reader.termDocs();
 try {
 if (enumerator.term() == null) {
 throw new RuntimeException(
 "no terms in field " + fieldname);
 }
 do {
 Term term = enumerator.term();
 if (term.field() != fieldname) break;
 termDocs.seek(enumerator);
 while (termDocs.next()) {
 String[] xy = term.text().split(",");
 int deltax = Integer.parseInt(xy[0]) - x;
 int deltay = Integer.parseInt(xy[1]) - y;

 distances[termDocs.doc()] = (float) Math.sqrt(
 deltax * deltax + deltay * deltay);
 }
 } while (enumerator.next());
 } finally {
 termDocs.close();
 }

Listing 6.2 DistanceComparatorSource

Implement SortComparatorSource b

Give constructor
base location

 c

newComparator d

ScoreDocComparator
 e

Array of
distances

 f

Iterate over
terms

 g

Iterate over
documents
containing
current term

 h

Compute
and store
distance

 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using a custom sort method 199
 }
 }

 public int compare(ScoreDoc i, ScoreDoc j) {
 if (distances[i.doc] < distances[j.doc]) return -1;
 if (distances[i.doc] > distances[j.doc]) return 1;
 return 0;
 }

 public Comparable sortValue(ScoreDoc i) {
 return new Float(distances[i.doc]);
 }

 public int sortType() {
 return SortField.FLOAT;
 }
 }

 public String toString() {
 return "Distance from ("+x+","+y+")";
 }

}

First we implement SortComparatorSource.
The constructor is handed the base location from which results are sorted by distance.
This is SortComparatorSource’s only method. Lucene itself handles the caching
of ScoreDocComparators.
This is our custom ScoreDocComparator implementation.
Here we create an array of distances.
We iterate over all the terms in the specified field.
Next, we iterate over every document containing the current term.
We compute and store the distance.
The compare method is used by the high-level searching API when the actual dis-
tance isn’t needed.
The sortValue method is used by the lower-level searching API when the dis-
tance value is desired.

The sorting infrastructure within Lucene caches (based on a key combining the
hashcode of the IndexReader, the field name, and the custom sort object) the
result of newComparator. Our DistanceScoreDocLookupComparator implementa-
tion makes space to store a float for every document in the index and computes
the distance from the base location to each document containing the specified

compare j

sortValue 1)

 b
 c
 d

 e
 f
 g
 h
 i
 j

 1)
Licensed to Jason Ruesch <krhonos713@hotmail.com>

200 CHAPTER 6
Extending search
sort field (location in our example). In a homogeneous index where all docu-
ments have the same fields, this would involve computing the distance for every
document. Given these steps, it’s imperative that you’re aware of the resources
utilized to sort; this topic is discussed in more detail in section 5.1.9 as well as in
Lucene’s Javadocs.

 Sorting by runtime information such as a user’s location is an incredibly pow-
erful feature. At this point, though, we still have a missing piece: What is the dis-
tance from each of the restaurants to our current location? When using the Hits-
returning search methods, we can’t get to the distance computed. However, a
lower-level API lets us access the values used for sorting.

6.1.1 Accessing values used in custom sorting

Beyond the IndexSearcher.search methods you’ve seen thus far, some lower-
level methods are used internally to Lucene and aren’t that useful to the outside.
The exception enters with accessing custom sorting values, like the distance to
each of the restaurants computed by our custom comparator source. The signa-
ture of the method we use, on IndexSearcher, is

public TopFieldDocs search(Query query, Filter filter,
 final int nDocs, Sort sort)

TopFieldDocs contains the total number of Hits, the SortField array used for sort-
ing, and an array of FieldDoc objects. A FieldDoc encapsulates the computed raw
score, document ID, and an array of Comparables with the value used for each Sort-
Field. TopFieldDocs and FieldDoc are specific to searching with a Sort, but a sim-
ilar low-level API exists when sorting isn’t being used: It returns TopDocs (parent
class of TopFieldDocs) containing an array of ScoreDoc (parent class of FieldDoc)
objects. Rather than concerning ourselves with the details of the API, which you
can get from Lucene’s Javadocs or the source code, let’s see how to really use it.

 Listing 6.3’s test case demonstrates the use of TopFieldDocs and FieldDoc to
retrieve the distance computed during sorting, this time sorting from Work at
location (10,10).

public void testNeareastRestaurantToWork() throws Exception {
 Sort sort = new Sort(new SortField("location",
 new DistanceComparatorSource(10, 10)));

 TopFieldDocs docs = searcher.search(query, null, 3, sort);

 assertEquals(4, docs.totalHits);

Listing 6.3 Accessing custom sorting values for search results

Specify maximum
hits returned

 b

Total number of hits c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Developing a custom HitCollector 201
 assertEquals(3, docs.scoreDocs.length);

 FieldDoc fieldDoc = (FieldDoc) docs.scoreDocs[0];

 assertEquals("(10,10) -> (9,6) = sqrt(17)",
 new Float(Math.sqrt(17)),
 fieldDoc.fields[0]);

 Document document = searcher.doc(fieldDoc.doc);
 assertEquals("Los Betos", document.get("name"));
}

This lower-level API requires that we specify the maximum number of hits
returned.
The total number of hits is still provided because all hits need to be determined
to find the three best ones.
The total number of documents (up to the maximum specified) are returned.
docs.scoreDocs(0) returns a ScoreDoc and must be cast to FieldDoc to get sort-
ing values.
The value of the first (and only, in this example) SortField computation is avail-
able in the first fields slot.
Getting the actual Document requires another call.

This lower-level API required that we specify how many search results we desired,
which is different than Hits-returning methods. In this case, limiting our results
to the three closest restaurants is more realistic anyway, because anything further
away isn’t what users want.

 The lower-level search methods aren’t useful to developers except in this par-
ticular case, so we don’t discuss them elsewhere. However, this is currently the
only way to get custom sort values. If you’re sorting on any of the standard Sort-
Field options, the values are available from Hits and the Document itself, so use
this lower-level interface only in this custom sorting scenario.

6.2 Developing a custom HitCollector

In most applications with full-text search, users are looking for the most rele-
vant documents from a query. The most common usage pattern is such that only
the first few highest-scoring hits are visited. In some scenarios, though, users
want to be shown all documents (by ID) that match a query without needing to
access the contents of the document; search filters, discussed in section 5.5, may
use HitCollectors efficiently in this manner. Another possible use, which we

Return total number
of documents

 d

Get sorting
values

 e

Give value of first
computation

 f

Get Document g

 b

 c

 d
 e

 f

 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

202 CHAPTER 6
Extending search
demonstrate in this section, is accessing every document’s contents from a search
in a direct fashion.

 Using a Hits-returning search method will work to collect all documents if
you traverse all the hits and process them manually, although you’re incurring
the effort of the caching mechanism within Hits. Using a custom HitCollector
class avoids the Hits collection.

6.2.1 About BookLinkCollector

We’ve developed a custom HitCollector, called BookLinkCollector, which builds
a map of all unique URLs and the corresponding book titles matching a query.
The collect(int, float) method must be implemented from the HitCollector
interface. BookLinkCollector is shown in listing 6.4.

public class BookLinkCollector extends HitCollector {
 private IndexSearcher searcher;
 private HashMap documents = new HashMap();

 public BookLinkCollector(IndexSearcher searcher) {
 this.searcher = searcher;
 }

 public void collect(int id, float score) {
 try {
 Document doc = searcher.doc(id);
 documents.put(doc.get("url"), doc.get("title"));
 } catch (IOException e) {
 // ignored
 }
 }

 public Map getLinks() {
 return Collections.unmodifiableMap(documents);
 }
}

Our collector collects all book titles (by URL) that match the query.

6.2.2 Using BookLinkCollector

Using a HitCollector requires the use of an use of IndexSearcher’s search method
variant as shown here:

Listing 6.4 Custom HitCollector: collects all book hyperlinks

Access documents
by ID
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Extending QueryParser 203
public void testCollecting() throws Exception {
 TermQuery query = new TermQuery(new Term("contents", "junit"));
 IndexSearcher searcher = getSearcher();

 BookLinkCollector collector = new BookLinkCollector(searcher);
 searcher.search(query, collector);
 searcher.close();

 Map linkMap = collector.getLinks();
 assertEquals("Java Development with Ant",
 linkMap.get("http://www.manning.com/antbook"));;
}

Calling IndexSearcher.doc(n) or IndexReader.document(n) in the collect
method can slow searches by an order of magnitude, so be sure your situation
requires access to all the documents. In our example, we’re sure we want the title
and URL of each document matched. Stopping a HitCollector midstream is a bit
of a hack, though, because there is no built-in mechanism to allow for this. To
stop a HitCollector, you must throw a runtime exception and be prepared to
catch it where you invoke search.

 Filters (see section 5.5), such as QueryFilter, can use a HitCollector to set bits
on a BitSet when documents are matched, and don’t access the underlying doc-
uments directly; this is a highly efficient use of HitCollector.

 The score passed to the collect method is the raw, denormalized, score. This
can differ from Hits.score(int), which will be normalized to be between 0 and 1
if the top-scoring document is greater than 1.0.

6.3 Extending QueryParser

In section 3.5, we introduced QueryParser and showed that it has a few settings
to control its behavior, such as setting the locale for date parsing and controlling
the default phrase slop. QueryParser is also extensible, allowing subclassing to
override parts of the query-creation process. In this section, we demonstrate sub-
classing QueryParser to disallow inefficient wildcard and fuzzy queries, custom
date-range handling, and morphing phrase queries into SpanNearQuerys instead
of PhraseQuerys.

6.3.1 Customizing QueryParser’s behavior

Although QueryParser has some quirks, such as the interactions with an analyzer,
it does have extensibility points that allow for customization. Table 6.1 details the
methods designed for overriding and why you may want to do so.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

204 CHAPTER 6
Extending search
All of the methods listed return a Query, making it possible to construct some-
thing other than the current subclass type used by the original implementations
of these methods. Also, each of these methods may throw a ParseException
allowing for error handling.

6.3.2 Prohibiting fuzzy and wildcard queries

The custom subclass in listing 6.5 demonstrates a custom query parser subclass
that disables fuzzy and wildcard queries by taking advantage of the Parse-
Exception option.

public class CustomQueryParser extends QueryParser {
 public CustomQueryParser(String field, Analyzer analyzer) {

Table 6.1 QueryParser’s extensibility points

Method Why override?

getFieldQuery(String field,
Analyzer analyzer,
String queryText)

or

getFieldQuery(String field,
Analyzer analyzer,
String queryText, int slop)

These methods are responsible for the construction of either a
TermQuery or a PhraseQuery. If special analysis is needed, or a
unique type of query is desired, override this method. For example, a
SpanNearQuery can replace PhraseQuery to force ordered
phrase matches.

getFuzzyQuery(String field,
String termStr)

Fuzzy queries can adversely affect performance. Override and throw a
ParseException to disallow fuzzy queries.

getPrefixQuery(String field,
String termStr)

This method is used to construct a query when the term ends with an
asterisk. The term string handed to this method doesn’t include the
trailing asterisk and isn’t analyzed. Override this method to perform any
desired analysis.

getRangeQuery(String field,
Analyzer analyzer, String start,
String end, boolean inclusive)

Default range-query behavior has several noted quirks (see
section 3.5.5). Overriding could:

■ Lowercase the start and end terms
■ Use a different date format
■ Handle number ranges by padding to match how numbers were

indexed

getWildcardQuery(String field,
String termStr)

Wildcard queries can adversely affect performance, so overridden
methods could throw a ParseException to disallow them. Alternatively,
since the term string isn’t analyzed, special handling may be desired.

Listing 6.5 Disallowing wildcard and fuzzy queries
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Extending QueryParser 205
 super(field, analyzer);
 }

 protected final Query getWildcardQuery(
 String field, String termStr) throws ParseException {
 throw new ParseException("Wildcard not allowed");
 }

 protected final Query getFuzzyQuery(
 String field, String termStr) throws ParseException {
 throw new ParseException("Fuzzy queries not allowed");
 }
}

To use this custom parser and prevent users from executing wildcard and fuzzy
queries, construct an instance of CustomQueryParser and use it exactly as you
would QueryParser, as shown in the following code. Be careful not to call the
static parse method that uses the built-in QueryParser behavior:

public void testCustomQueryParser() {
 CustomQueryParser parser =
 new CustomQueryParser("field", analyzer);
 try {
 parser.parse("a?t");
 fail("Wildcard queries should not be allowed");
 } catch (ParseException expected) {
 // expected
 assertTrue(true);
 }

 try {
 parser.parse("xunit~");
 fail("Fuzzy queries should not be allowed");
 } catch (ParseException expected) {
 // expected
 assertTrue(true);
 }
}

With this implementation, both of these expensive query types are forbidden,
giving you some peace of mind in terms of performance and errors that may
arise from these queries expanding into too many terms.

6.3.3 Handling numeric field-range queries

Lucene is all about dealing with text. You’ve seen in several places how dates can
be handled, which amounts to their being converted into a text representation
Licensed to Jason Ruesch <krhonos713@hotmail.com>

206 CHAPTER 6
Extending search
that can be ordered alphabetically. Handling numbers is basically the same,
except implementing a conversion to a text format is left up to you.

 In this section, our example scenario indexes an integer id field so that range
queries can be performed. If we indexed toString representations of the inte-
gers 1 through 10, the order in the index would be 1, 10, 2, 3, 4, 5, 6, 7, 8, 9—
not the intended order at all. However, if we pad the numbers with leading zeros
so that all numbers have the same width, the order is correct: 01, 02, 03, and so
on. You’ll have to decide on the maximum width your numbers need; we chose
10 digits and implemented the following pad(int) utility method:3

public class NumberUtils {
 private static final DecimalFormat formatter =
 new DecimalFormat("0000000000");

 public static String pad(int n) {
 return formatter.format(n);
 }
}

The numbers need to be padded during indexing. This is done in our test setUp()
method on the id keyword field:

public class AdvancedQueryParserTest extends TestCase {
 private Analyzer analyzer;
 private RAMDirectory directory;

 protected void setUp() throws Exception {
 super.setUp();
 analyzer = new WhitespaceAnalyzer();

 directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory, analyzer,
 true);
 for (int i = 1; i <= 500; i++) {
 Document doc = new Document();
 doc.add(Field.Keyword("id", NumberUtils.pad(i)));
 writer.addDocument(doc);
 }
 writer.close();
 }
}

With this index-time padding, we’re only halfway there. A query expression for
IDs 37 through 346 phrased as id:[37 TO 346] won’t work as expected with the

3 Lucene stores term information with prefix compression so that no penalty is paid for large shared
prefixes like this zero padding.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Extending QueryParser 207
default RangeQuery created by QueryParser. The values are taken literally and
aren’t padded as they were when indexed. Fortunately we can fix this problem in
our CustomQueryParser by overriding the getRangeQuery() method:

protected Query getRangeQuery(String field, Analyzer analyzer,
 String part1, String part2,
 boolean inclusive)
 throws ParseException {
 if ("id".equals(field)) {
 try {
 int num1 = Integer.parseInt(part1);
 int num2 = Integer.parseInt(part2);
 return new RangeQuery(
 new Term(field, NumberUtils.pad(num1)),
 new Term(field, NumberUtils.pad(num2)),
 inclusive);
 } catch (NumberFormatException e) {
 throw new ParseException(e.getMessage());
 }
 }

 return super.getRangeQuery(field, analyzer, part1, part2,
 inclusive);
}

This implementation is specific to our id field; you may want to generalize it for
more fields. If the field isn’t id, it delegates to the default behavior. The id field
is treated specially, and the pad function is called just as with indexing. The fol-
lowing test case shows that the range query worked as expected, and you can see
the results of the padding using Query’s toString(String) method:

public void testIdRangeQuery() throws Exception {
 CustomQueryParser parser =
 new CustomQueryParser("field", analyzer);

 Query query = parser.parse("id:[37 TO 346]");

 assertEquals("padded", "id:[0000000037 TO 0000000346]",
 query.toString("field"));

 IndexSearcher searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(query);

 assertEquals(310, hits.length());
}

Our test shows that we’ve succeeded in allowing sensible-looking user-entered
range queries to work as expected.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

208 CHAPTER 6
Extending search
6.3.4 Allowing ordered phrase queries

When QueryParser parses a single term, or terms within double quotes, it dele-
gates the construction of the Query to a getFieldQuery method. Parsing an
unquoted term calls the getFieldQuery method without the slop signature (slop
makes sense only on multiterm phrase query); parsing a quoted phrase calls the
getFieldQuery signature with the slop factor, which internally delegates to the
nonslop signature to build the query and then sets the slop appropriately. The
Query returned is either a TermQuery or a PhraseQuery, by default, depending on
whether one or more tokens are returned from the analyzer.4 Given enough slop,
PhraseQuery will match terms out of order in the original text. There is no way to
force a PhraseQuery to match in order (except with slop of 0 or 1). However,
SpanNearQuery does allow in-order matching. A straightforward override of get-
FieldQuery allows us to replace a PhraseQuery with an ordered SpanNearQuery:

protected Query getFieldQuery(
 String field, Analyzer analyzer, String queryText, int slop)
 throws ParseException {
 Query orig = super.getFieldQuery(field, analyzer, queryText);

 if (! (orig instanceof PhraseQuery)) {
 return orig;
 }

 PhraseQuery pq = (PhraseQuery) orig;
 Term[] terms = pq.getTerms();
 SpanTermQuery[] clauses = new SpanTermQuery[terms.length];
 for (int i = 0; i < terms.length; i++) {
 clauses[i] = new SpanTermQuery(terms[i]);
 }

 SpanNearQuery query = new SpanNearQuery(
 clauses, slop, true);

 return query;
}

We delegate to QueryParser’s implementation for analysis and determination of
query type.
Here we override PhraseQuery and return anything else right away.
We pull all terms from the original PhraseQuery.
Finally, we create a SpanNearQuery with all the terms from the original PhraseQuery.

4 A PhraseQuery could be created from a single term if the analyzer created more than one token for it.

Delegate to QueryParser’s
implementation

 b

Only override
PhraseQuery

 c

Pull all terms d

Create
SpanNearQuery

 e

 b

 c
 d
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using a custom filter 209
Our test case shows that our custom getFieldQuery is effective in creating a Span-
NearQuery:

public void testPhraseQuery() throws Exception {
 CustomQueryParser parser =
 new CustomQueryParser("field", analyzer);

 Query query = parser.parse("singleTerm");
 assertTrue("TermQuery", query instanceof TermQuery);

 query = parser.parse("\"a phrase\"");
 assertTrue("SpanNearQuery", query instanceof SpanNearQuery);
}

Another possible enhancement would add a toggle switch to the custom query
parser, allowing the in-order flag to be controlled by the user of the API.

6.4 Using a custom filter

If all the information needed to perform filtering is in the index, there is no
need to write your own filter because the QueryFilter can handle it. However,
there are good reasons to factor external information into a custom filter. Using
our book example data and pretending we’re running an online bookstore, we
want users to be able to search within our special hot deals of the day. One
option is to store the specials flag in an index field. However, the specials change
frequently. Rather than reindex documents when specials change, we opt to keep
the specials flagged in our (hypothetical) relational database.

 To do this right, we want it to be test-driven and demonstrate how our Specials-
Filter can pull information from an external source without even having an exter-
nal source! Using an interface, a mock object, and good ol’ JUnit, here we go.
First, here’s the interface for retrieving specials:

public interface SpecialsAccessor {
 String[] isbns();
}

Since we won’t have an enormous amount of specials at one time, returning all
the ISBNs of the books on special will suffice.

 Now that we have a retrieval interface, we can write our custom filter, Specials-
Filter. Filters extend from the org.jakarta.lucene.search.Filter class and
must implement the bits(IndexReader reader) method, returning a BitSet. Bit
positions match the document numbers. Enabled bits mean the document for
that position is available to be searched against the query, and unset bits mean the
Licensed to Jason Ruesch <krhonos713@hotmail.com>

210 CHAPTER 6
Extending search
document won’t be considered in the search. Figure 6.2 illustrates an example
SpecialsFilter that sets bits for books on special (see listing 6.6).

public class SpecialsFilter extends Filter {
 private SpecialsAccessor accessor;

 public SpecialsFilter(SpecialsAccessor accessor) {
 this.accessor = accessor;
 }

 public BitSet bits(IndexReader reader) throws IOException {
 BitSet bits = new BitSet(reader.maxDoc());

 String[] isbns = accessor.isbns();

 int[] docs = new int[1];
 int[] freqs = new int[1];

 for (int i = 0; i < isbns.length; i++) {
 String isbn = isbns[i];
 if (isbn != null) {
 TermDocs termDocs =
 reader.termDocs(new Term("isbn", isbn));

Listing 6.6 SpecialsFilter: a custom filter that retrieves information from an
external source

Figure 6.2 Filtering for books on special

Fetch ISBNs b

Jump to term c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using a custom filter 211
 int count = termDocs.read(docs, freqs);
 if (count == 1) {
 bits.set(docs[0]);
 }
 }
 }

 return bits;
 }
}

Here, we fetch the ISBNs of the specials we want to enable for searching.
isbn is indexed as a Keyword field and is unique, so we use IndexReader to jump
directly to the term.
With the matching document found, we set its corresponding bit.

Returning null from the bits() method is the same as lighting up all the bits. All
documents will be considered, just as if the query had been done without the use
of a filter.

 To test that our filter is working, we created a simple MockSpecialsAccessor to
return a specified set of ISBNs, giving our test case control over the set of specials:

public class MockSpecialsAccessor implements SpecialsAccessor {
 private String[] isbns;

 public MockSpecialsAccessor(String[] isbns) {
 this.isbns = isbns;
 }

 public String[] isbns() {
 return isbns;
 }
}

Here’s how we test our SpecialsFilter, using the same setUp() that the other fil-
ter tests used:

public void testCustomFilter() throws Exception {
 String[] isbns = new String[] {"0060812451"};

 SpecialsAccessor accessor = new MockSpecialsAccessor(isbns);
 Filter filter = new SpecialsFilter(accessor);
 Hits hits = searcher.search(allBooks, filter);
 assertEquals("the specials", isbns.length, hits.length());
}

Set corresponding bit d

 b
 c

 d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

212 CHAPTER 6
Extending search
We use a generic query that is broad enough to retrieve all the books, making
assertions easier to craft; but because our filter trimmed the search space, only the
specials are returned. With this infrastructure in place, implementing a Specials-
Accessor to retrieve a list of ISBNs from a database should be easy; doing so is left
as an exercise for the savvy reader.

 Note that we made an important implementation decision not to cache the Bit-
Set in SpecialsFilter. Decorating SpecialsFilter with a CachingWrapperFilter
frees us from that aspect.

6.4.1 Using a filtered query

To add to the filter terminology overload, one final option is new in Lucene 1.4:
FilteredQuery.5 FilteredQuery inverts the situation that searching with a Filter
presents. Using a Filter an IndexSearcher’s search method applies a single fil-
ter prior to querying. Using the new FilteredQuery, though, you can apply a
Filter to a particular query clause of a BooleanQuery.

 Let’s take the SpecialsFilter as an example again. This time, we want a more
sophisticated query: books in an education category on special, or books on Logo.6

We couldn’t accomplish this with a direct query using the techniques shown thus
far, but FilteredQuery makes this possible. Had our search been only for books in
the education category on special, we could have used the technique shown in the
previous code snippet, instead.

 Our test case, in listing 6.7, demonstrates the described query using a Boolean-
Query with a nested TermQuery and FilteredQuery.

public void testFilteredQuery() throws Exception {
 String[] isbns = new String[] {"0854402624"};

 SpecialsAccessor accessor = new MockSpecialsAccessor(isbns);
 Filter filter = new SpecialsFilter(accessor);

 WildcardQuery educationBooks =
 new WildcardQuery(new Term("category", "*education*"));
 FilteredQuery edBooksOnSpecial =
 new FilteredQuery(educationBooks, filter);

5 We’re sorry! We know that Filter, QueryFilter, FilteredQuery, and the completely unrelated Token-
Filter names can be confusing.

6 Erik began his programming adventures with Logo on an Apple][e. Times haven’t changed much;
now he tinkers with StarLogo on a PowerBook.

Listing 6.7 Using a FilteredQuery

Rudolf Steiner’s book b

All education
books on

special
 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Performance testing 213
 TermQuery logoBooks =
 new TermQuery(new Term("subject", "logo"));

 BooleanQuery logoOrEdBooks = new BooleanQuery();
 logoOrEdBooks.add(logoBooks, false, false);
 logoOrEdBooks.add(edBooksOnSpecial, false, false);

 Hits hits = searcher.search(logoOrEdBooks);
 System.out.println(logoOrEdBooks.toString());
 assertEquals("Papert and Steiner", 2, hits.length());
}

This is the ISBN number for Rudolf Steiner’s A Modern Art of Education.
We construct a query for education books on special, which only includes Steiner’s
book in this example.
We construct a query for all books with logo in the subject, which only includes
Mindstorms in our sample data.
The two queries are combined in an OR fashion.

The bits() method of the nested Filter is called each time a FilteredQuery is
used in a search, so we recommend that you use a caching filter if the query is to
be used repeatedly and the results of a filter don’t change.

6.5 Performance testing

Lucene is fast and scalable. But how fast is it? Is it fast enough? Can you guaran-
tee that searches are returned within a reasonable amount of time? How does
Lucene respond under load?

 If your project has high performance demands, you’ve done the right thing by
choosing Lucene, but don’t let performance numbers be a mystery. There are sev-
eral ways Lucene’s performance can be negatively impacted by how you use it—
like using fuzzy or wildcard queries or a range query, as you’ll see in this section.

 We’ve been highlighting unit testing throughout the book using the basics of
JUnit. In this section, we utilize another unit-testing gem, JUnitPerf. JUnitPerf, a
JUnit decorator, allows JUnit tests to be measured for load and speed.

6.5.1 Testing the speed of a search

We’ve discussed how FuzzyQuery and WildcardQuery have the potential to get out
of control. In a similar fashion, RangeQuery can, too: As it enumerates all the
terms in the range, it forms a BooleanQuery that can potentially be large.

All books with
“logo” in subject

 d

Combine
queries

 e

 b
 c

 d

 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

214 CHAPTER 6
Extending search
 The infamous Mike “addicted to the green bar” Clark has graciously donated
some Lucene performance tests to us.7 Let’s examine a concrete example in
which we determine that a searching performance issue is caused by how we
index, and find out how we can easily fix this issue. We rely on JUnitPerf to iden-
tify the issue and ensure that it’s fixed and stays fixed.

 We’re indexing documents that have a last-modified timestamp. For example
purposes, we index a sample of 1,000 fabricated documents with timestamps
increasing in 1-second increments, starting yesterday:

Calendar timestamp = GregorianCalendar.getInstance();
timestamp.set(Calendar.DATE,
 timestamp.get(Calendar.DATE) - 1);

for (int i = 0; i < size; i++) {
 timestamp.set(Calendar.SECOND,
 timestamp.get(Calendar.SECOND) + 1);
 Date now = timestamp.getTime();
 Document document = new Document();
 document.add(Field.Keyword("last-modified", now));
 writer.addDocument(document);
}

Being the test-infected coders we are, we even ensure that our search is returning
the expected results by searching over a timestamp range that encompasses all
documents indexed:

public void testSearchByTimestamp() throws Exception {
 Search s = new Search();
 Hits hits = s.searchByTimestamp(janOneTimestamp,
 todayTimestamp);
 assertEquals(1000, hits.length());
}

searchByTimestamp performs a RangeQuery:8

public Hits searchByTimestamp(Date begin, Date end)
 throws Exception {
 Term beginTerm = new Term("last-modified",
 DateField.dateToString(begin));
 Term endTerm = new Term("last-modified",
 DateField.dateToString(end));

7 Mike is the coauthor of Bitter EJB (Manning) and the author of Pragmatic Automation (Pragmatic Book-
shelf); http://www.clarkware.com.

8 We’re intentionally skipping bits of Mike’s test infrastructure to keep our discussion focused on the
performance-testing aspect rather than get bogged down following his nicely decoupled code. See the
“about this book” section at the beginning of the book for details on obtaining the full source code.

Yesterday b

Increase 1 second c

As Date d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Performance testing 215
 Query query = new RangeQuery(beginTerm, endTerm, true);

 return newSearcher(
 index.byTimestampIndexDirName()).search(query);
}

At this point, all is well. We’ve indexed 1,000 documents and found them all
using an encompassing date RangeQuery. Ship it! Whoa…not so fast…what if we
had indexed 2,000 documents? Here’s what happens when we run the test-
SearchByTimestamp() test method:

org.apache.lucene.search.BooleanQuery$TooManyClauses
 at org.apache.lucene.search.BooleanQuery.add(BooleanQuery.java:109)
 at org.apache.lucene.search.BooleanQuery.add(BooleanQuery.java:101)
 at org.apache.lucene.search.RangeQuery.rewrite(RangeQuery.java:137)
 at

org.apache.lucene.search.IndexSearcher.rewrite(IndexSearcher.java:227)
 at org.apache.lucene.search.Query.weight(Query.java:84)
 at

org.apache.lucene.search.IndexSearcher.search(IndexSearcher.java:129)
 at org.apache.lucene.search.Hits.getMoreDocs(Hits.java:102)
 at org.apache.lucene.search.Hits.<init>(Hits.java:81)
 at org.apache.lucene.search.Searcher.search(Searcher.java:71)
 at org.apache.lucene.search.Searcher.search(Searcher.java:65)
 at lia.advsearching.perf.Search.searchByTimestamp(Search.java:40)
 at

lia.advsearching.perf.SearchTest.testSearchByTimestamp(SearchTest.java:24)

Our dataset is only 2,000 documents, which is no problem for Lucene to handle.
But a RangeQuery internally rewrites itself to a BooleanQuery with a nonrequired
clause for every term in the range. That is, with 2,000 documents being indexed,
the searchByTimestamp() method will cause 2,000 OR’d TermQuerys nested in a
BooleanQuery. This exceeds the default limit of 1,024 clauses to a BooleanQuery,
which prevents queries from getting carried away.

Modifying the index
For searching purposes, though, the goal is to be able to search by date range.
It’s unlikely we’ll need to search for documents in a range of seconds, so using
this fine-grained timestamp isn’t necessary. In fact, it’s problematic. Indexing
1,000 or 2,000 documents in successive second timestamp increments gives each
document a completely unique term, all within the span of less than an hour’s
worth of timestamps.

 Since searching by day, not second, is the real goal, let’s index the documents
by day instead:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

216 CHAPTER 6
Extending search
String today = Search.today();

for (int i = 0; i < size; i++) {
 Document document = new Document();
 document.add(Field.Keyword("last-modified", today));
 writer.addDocument(document);
}

Here, today is set to YYYYMMDD format. Remember, terms are sorted alphabeti-
cally, so numbers need to take this into account (see section 6.3.3 for a number-
padding example):

public static String today() {
 SimpleDateFormat dateFormat =
 (SimpleDateFormat) SimpleDateFormat.getDateInstance();
 dateFormat.applyPattern("yyyyMMdd");
 return dateFormat.format(todayTimestamp());
}

Notice that we’re using a String value for today (such as 20040715) rather than
using the DateField.dateToString() method. Regardless of whether you index
by timestamp or by YYYYMMDD format, the documents all have the same year,
month, and day; so in our second try at indexing a last-modified field, there is
only a single term in the index, not thousands. This is a dramatic improvement
that’s easily spotted in JUnitPerf tests. You can certainly keep a timestamp field
in the document, too—it just shouldn’t be a field used in range queries.

Testing the timestamp-based index
Listing 6.8 is a JUnitPerf TimedTest, testing that our original 1,000 documents
are found in 100 milliseconds or less.

public class SearchTimedTest {

 public static Test suite() {
 int maxTimeInMillis = 100;

 Test test = new SearchTest("testSearchByTimestamp");
 TestSuite suite = new TestSuite();

 suite.addTest(test);
 suite.addTest(new TimedTest(test, maxTimeInMillis));

 return suite;
 }
}

Listing 6.8 JUnitPerf-decorated timed test

Warmup test b
Wrap test in
TimedTest

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Performance testing 217
We first run one test to warm up the JVM prior to timing.
Then, we wrap the simple test inside a TimedTest, asserting that it runs in 100
milliseconds or less.

This test fails because it exceeds the 100-millisecond constraint:

 [junit] Testcase: testSearchByTimestamp(lia.advsearching.perf.SearchTest):
FAILED

 [junit] Maximum elapsed time exceeded! Expected 100ms, but was 138ms.
 [junit] junit.framework.AssertionFailedError: Maximum elapsed time

exceeded! Expected 100ms, but was 138ms.
 [junit] at

com.clarkware.junitperf.TimedTest.runUntilTestCompletion(Unknown Source)
 [junit] at com.clarkware.junitperf.TimedTest.run(Unknown Source)

The test failed, but not by much. Of course, when 2,000 documents are attempted
it fails horribly with a TooManyClauses exception.

Testing the date-based index
Now let’s write a unit test that uses the YYYYMMDD range:

public void testSearchByDay() throws Exception {
 Search s = new Search();
 Hits hits = s.searchByDay("20040101", today);
 assertEquals(1000, hits.length());
}

The value of today in testSearchByDay() is the current date in YYYYMMDD for-
mat. Now we replace one line in SearchTimedTest with a testSearchByDay():

Test test = new SearchTest("testSearchByDay");

Our SearchTimedTest now passes with flying colors (see figure 6.3 for timings of
SearchTest under load).

6.5.2 Load testing

Not only can JUnitPerf decorate a test and assert that it executes in a tolerated
amount of time, it can also perform load tests by simulating a number of concur-
rent users. The same decorator pattern is used as with a TimedTest. Decorating a
TimedTest with a LoadTest is the general usage, as shown in listing 6.9.

public class SearchLoadTest {

 public static Test suite() {

 int maxTimeInMillis = 100;

 b
 c

Listing 6.9 Load test
Licensed to Jason Ruesch <krhonos713@hotmail.com>

218 CHAPTER 6
Extending search
 int concurrentUsers = 10;

 Test test = new SearchTest("testSearchByDay");

 TestSuite suite = new TestSuite();
 suite.addTest(test);
 Test timedTest = new TimedTest(test, maxTimeInMillis);
 LoadTest loadTest = new LoadTest(timedTest, concurrentUsers);
 suite.addTest(loadTest);

 return suite;
 }
}

We wrap the basic test (ensuring that 1,000 hits are found) with a TimedTest.
Then we wrap the TimedTest in a LoadTest, which executes the TimedTest 10 times
concurrently.

SearchLoadTest executes testSearchByDay() 10 times concurrently, with each
thread required to execute in under 100 milliseconds. It should be no surprise
that switching the SearchLoadTest to run SearchTest.testSearchByTimestamp()
causes a failure, since it fails even the SearchTimedTest. The timings of each
SearchTest, run as 10 concurrent tests, are shown in figure 6.3.

 The results indicate that each test performed well under the 100-millisecond
requirement, even running under concurrent load.

6.5.3 QueryParser again!

QueryParser rears its ugly head again with our changed date format. The built-in
date-range handling parses DateFormat.SHORT formats into the DateField text
conversions. It would be nice to let users enter a typical date format like 1/1/04
and have it converted to our revised date format of YYYYMMDD. This can be

Wrap basic test
with TimedTest

 b

Wrap TimedTest
in LoadTest

 c

 b
 c

Figure 6.3
Performance test results for 10 concurrent
SearchTests, each required to complete
in 100 milliseconds or less
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Performance testing 219
done in a similar fashion to what we did in section 6.3.3 to pad integers for
range queries. The desired effect is shown in the following test:

 public void testQueryParsing() throws Exception {
 SmartDayQueryParser parser =
 new SmartDayQueryParser("contents",
 new StandardAnalyzer());

 Query query =
 parser.parse("last-modified:[1/1/04 TO 2/29/04]");

 assertEquals("last-modified:[20040101 TO 20040229]",
 query.toString("contents"));
 }

Now that we have our desired effect coded as a test case, let’s make it pass by cod-
ing SmartDayQueryParser.

Understanding SmartDayQueryParser
The SmartDayQueryParser is a simple adaptation of the built-in QueryParser’s
getRangeQuery method:

public class SmartDayQueryParser extends QueryParser {
 public static final DateFormat formatter =
 new SimpleDateFormat("yyyyMMdd");

 public SmartDayQueryParser(String field, Analyzer analyzer) {
 super(field, analyzer);
 }

 protected Query getRangeQuery(String field, Analyzer analyzer,
 String part1, String part2,
 boolean inclusive)
 throws ParseException {

 try {
 DateFormat df =
 DateFormat.getDateInstance(DateFormat.SHORT,
 getLocale());
 df.setLenient(true);
 Date d1 = df.parse(part1);
 Date d2 = df.parse(part2);
 part1 = formatter.format(d1);
 part2 = formatter.format(d2);
 } catch (Exception ignored) {
 }

 return new RangeQuery(new Term(field, part1),
 new Term(field, part2),
Licensed to Jason Ruesch <krhonos713@hotmail.com>

220 CHAPTER 6
Extending search
 inclusive);
 }
}

The only difference between our overridden getRangeQuery and the original
implementation is the use of YYYYMMDD formatting.

6.5.4 Morals of performance testing

In addition to testing whether Lucene can perform acceptably with your envi-
ronment and data, unit performance testing assists (as does basic JUnit testing)
in the design of your code. In this case, you’ve seen how our original method of
indexing dates was less than desirable even though our first unit test succeeded
with the right number of results. Only when we tested with more data or with
time and load constraints did an issue present itself. We could have swept the
data failure under the rug temporarily by setting BooleanQuery’s setMaxClause-
Count(int) to Integer.MAX_VALUE. However, we wouldn’t be able to hide a per-
formance test failure.

 We strongly encourage you to adopt unit testing in your projects and to con-
tinue to evolve the testing codebase into performance unit testing. As you can
tell from the code examples in this book, we are highly test-centric, and we also
use tests for learning purposes by exploring APIs. Lucene itself is built around a
strong set of unit tests, and it improves on a regular basis.

NOTE We would be remiss not to recommend further reading on unit testing.
Pragmatic Unit Testing by Dave Thomas and Andy Hunt is a concise and
elegant introduction to unit testing. Manning’s JUnit in Action is fantas-
tic; it goes beyond the basics and delves into topics like performance
testing and mock unit testing, both of which we have incorporated into
the books’ source code.

6.6 Summary

Lucene offers developers extreme flexibility in searching capabilities. Custom
sorting and filters, QueryParser subclassing, and a HitCollector implementation
all received attention in this chapter. Equipped with the searching features from
this chapter and chapters 3 and 5, you have more than enough power and flexi-
bility to integrate Lucene searching into your applications.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Part 2

Applied Lucene

Lucene itself is just a JAR, with the real fun and power coming from what
you build around it. This section explores various ways to leverage Lucene.
Projects commonly demand full-text searching of Microsoft Word, PDF, HTML,
XML, and other document formats. “Parsing common document formats” illu-
minates the various ways to index these document types into Lucene, ulti-
mately providing a reusable generic document-handling framework. Many
“Tools and extensions” have been developed to augment and extend Lucene,
with the finest ones being covered here. Although Java is the primary language
used with Lucene, the index format is language neutral. The “Lucene ports”
chapter details Lucene usage from languages such as C++, C#, and Python.
Last, but certainly not least, several superb “Case studies” have been graciously
contributed, giving you a deep look into projects that have achieved great suc-
cess with Lucene’s power.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Parsing common
document formats
This chapter covers
■ Parsing XML using the SAX 2.0 API and Jakarta

Commons Digester
■ Parsing PDF documents with PDFBox
■ Parsing HTML using JTidy and NekoHTML
■ Parsing Microsoft Word documents with Jakarta

POI and the TextMining.org API
■ Parsing RTF documents using the built-in JDK

parser
■ Creating a document indexing framework and

application
223

Licensed to Jason Ruesch <krhonos713@hotmail.com>

224 CHAPTER 7
Parsing common document formats
So far in this book, we have covered various aspects of Lucene usage. In all cases,
however, we have dealt exclusively with plain-text data. In the real world, docu-
ments in plain-text format are diminishing, and in their place we increasingly
find information presented in rich media documents. For example:

■ Corporate environments most frequently work with PDF, Microsoft Word,
or Excel documents.

■ The World-Wide Web typically contains data in HTML.
■ Software applications are increasingly using XML to exchange data.

Can you use Lucene to search rich-text documents like these? Yes, you can!
 Although Lucene doesn’t include tools to automatically index documents that

aren’t plain text, there are a number of free and commercial tools that you can
use to extract the textual data from rich media.1 Once extracted, you can index
the data with Lucene as discussed in chapter 2.

 In this chapter, we’ll start by presenting a simple DocumentHandler interface as
an abstraction to nest within a rich framework for parsing and indexing docu-
ments of any type.

 Next, we’ll walk through examples to show you how to parse and index various
document types such as plain text, PDF, Microsoft Word, HTML, XML, and RTF
with Lucene. Each example uses a third-party tool to extract the text. In addition,
each example implements a specialized version of the DocumentHandler interface.

 Finally, we’ll develop a small framework capable of indexing multiple file
formats. We’ll use this framework to write a full-blown file-system indexer sam-
ple application.

7.1 Handling rich-text documents

In addition to showing you how to parse and index individual document formats,
our goal in this chapter is to create a small framework that you can use to index
documents commonly found in the office environment as well as on the Internet.
Such a framework is useful when your goal is to index and enable users to search
for files that reside in multiple directories and are of different formats, or if you
need to fetch and index web pages of different content types. In both cases, using
a framework that handles multiple file types automates the process of extracting
the text from each file format so that you don’t need to concern yourself with how

1 Lucene developers purposely keep the Lucene core small and focused. Since a number of tools exist
that extract text from rich media, there is no need to include duplicate functionality in Lucene.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://jakarta.apache.org/lucene/docs/index.html
http://jakarta.apache.org/poi/index.html
http://jakarta.apache.org/poi/index.html
http://www.pdfbox.org/
http://www.pdfbox.org/
http://jakarta.apache.org/lucene/
http://jakarta.apache.org/lucene/

Handling rich-text documents 225
exactly it’s accomplished. We start by defining a generic DocumentHandler inter-
face that defines a contract for individual document parsers.

7.1.1 Creating a common DocumentHandler interface

The simple interface shown in listing 7.1 consists of a single method, get-
Document(InputStream), which returns an instance of the Lucene Document. Each
of the document parsers that we’ll create in this chapter must implement this
single method.

 We use InputStream as the input type because all tools that we use in this chap-
ter allow text extraction from InputStream. Using InputStream is also handy when
you’re indexing files in a file system, because you can turn each File class instance
into a FileInputStream by using the java.io.FileInputStream(File) constructor.

public interface DocumentHandler {

 /**
 * Creates a Lucene Document from an InputStream.
 * This method can return <code>null</code>.
 *
 * @param is the InputStream to convert to a Document
 * @return a ready-to-index instance of Document
 */
 Document getDocument(InputStream is)
 throws DocumentHandlerException;
}

All implementations of this handler return an instance of the Lucene Document
class with one or more Fields. Because different types of documents store differ-
ent meta-data, the returned Document instances contain different Fields. For
example, HTML documents typically have titles, whereas XML documents don’t.
Thus, the HTML DocumentHandler may return a Document with a title Field, but
the XML DocumentHandler may not.

 If any kind of error occurs, all classes implementing the DocumentHandler
interface throw a DocumentHandlerException. This is a checked exception, a sim-
ple subclass of Java’s Exception class, so we’ll omit its listing.

 In general, all the parsers in this chapter follow the steps outlined in table 7.1.

Listing 7.1 DocumentHandler interface that all document format parsers will
implement
Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://xml.apache.org/xerces2-j/index.html

226 CHAPTER 7
Parsing common document formats
Finally, each implementation of DocumentHandler that we present in this chapter
includes a main method, allowing you to invoke it from the command line. All
main methods expect a single command-line parameter that represents a path to
a file. To keep the code listings as short and simple as possible, we don’t check
for valid input, so make sure you always provide valid input.

 The parsers you will learn about focus exclusively on input parsing and cre-
ation of Lucene Document instances, not on the actual indexing. After all, once
these parsers convert their input to ready-to-index Lucene Documents, the index-
ing step is identical for all document types; we don’t want to duplicate it in every
parser implementation. Furthermore, having the wrapping framework handle
the indexing decouples the architecture nicely and allows the framework to add
common fields for all documents if desired (such as last modified date, file sys-
tem path, URL, and so on).

 Now that you have a high-level understanding of how rich-text document
parsers work and how the pieces will fit together in the end, let’s start with the
parser implementation. XML is a common document format these days—even
office applications such as OpenOffice use it as their main on-disk document for-
mat—so we’ll begin with an XML parser.

7.2 Indexing XML

In this section, we’ll convert a snippet of an XML document into a Lucene Document.
First we’ll use the SAX API, and then we’ll use the Jakarta Commons Digest. Then
we’ll index the snippet with Lucene.

 Listing 7.2 is an XML snippet that represents a single entry from an imaginary
address book. Our ultimate goal is to make this address book searchable so we can
find matching entries in it using a simple search syntax, such as name:Zane or
city:"New York" (see section 3.1.2 for more details on QueryParser syntax).

Table 7.1 Common DocumentHandler implementation steps

Step Description

1. Process
InputStream.

Take InputStream input.
Read and parse the InputStream.
Extract text from the InputStream.

2. Create Lucene
Document.

Create an instance of Lucene Document.
Create Lucene Fields with textual values extracted from the InputStream.
Add Fields to the Lucene Document.
Return the Lucene Document, ready to be indexed by the caller.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing XML 227
<?xml version='1.0' encoding='utf-8'?>
<address-book>
 <contact type="individual">
 <name>Zane Pasolini</name>
 <address>999 W. Prince St.</address>
 <city>New York</city>
 <province>NY</province>
 <postalcode>10013</postalcode>
 <country>USA</country>
 <telephone>+1 212 345 6789</telephone>
 </contact>
</address-book>

Although it would be possible to create a powerful and flexible application that
can handle XML for any Document Type Definition (DTD), the two XML Document-
Handler implementations in this section assume the address book XML format
shown in listing 7.2, in order to keep things simple.

 Our XML DocumentHandler implementations index each subelement of the
<contact> element. Note that the <contact> element has an attribute type. In
both the SAX and Digester implementations of our DocumentHandler, we’ll treat
this attribute as just another field.

7.2.1 Parsing and indexing using SAX

Simple API for XML (SAX) defines an event-driven interface in which the parser
invokes one of several methods supplied by the caller when a parsing event
occurs. Events include beginnings and endings of documents and their ele-
ments, parsing errors, and so on.

 To provide an example of extracting textual data from XML documents, we
use Xerces2 Java Parser. Xerces2 Java Parser is developed under the Apache XML
project and can be found at http://xml.apache.org/xerces2-j/index.html. It imple-
ments version 2.0.1 of the SAX API. This isn’t the fastest XML parser currently
available, but it’s one of the most widely used Java XML parsers, and it has been
around for many years.

 Listing 7.3 shows our solution for parsing the XML address book and convert-
ing it to a Lucene Document.

public class SAXXMLHandler
 extends DefaultHandler implements DocumentHandler {

Listing 7.2 XML snippet representing an address book entry

Listing 7.3 DocumentHandler using the SAX API to parse an address book entry
Licensed to Jason Ruesch <krhonos713@hotmail.com>

228 CHAPTER 7
Parsing common document formats
 /** A buffer for each XML element */
 private StringBuffer elementBuffer = new StringBuffer();
 private HashMap attributeMap;

 private Document doc;

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 SAXParserFactory spf = SAXParserFactory.newInstance();
 try {
 SAXParser parser = spf.newSAXParser();
 parser.parse(is, this);
 }
 catch (IOException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }
 catch (ParserConfigurationException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }
 catch (SAXException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }

 return doc;
 }

 public void startDocument() {
 doc = new Document();
 }

 public void startElement(String uri, String localName,
 String qName, Attributes atts) throws SAXException {

 elementBuffer.setLength(0);
 attributeMap.clear();
 if (atts.getLength() > 0) {
 attributeMap = new HashMap();
 for (int i = 0; i < atts.getLength(); i++) {
 attributeMap.put(atts.getQName(i), atts.getValue(i));
 }
 }
 }

 // called when cdata is found
 public void characters(char[] text, int start, int length) {
 elementBuffer.append(text, start, length);
 }

Implement DocumentHandler
interface; start parser

 b

Called when
parsing begins

 c

Beginning of new
XML element

 d

Append element contents
to elementBuffer

 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing XML 229
 // called at element end
 public void endElement(String uri, String localName, String qName)
 throws SAXException {
 if (qName.equals("address-book")) {
 return;
 }
 else if (qName.equals("contact")) {
 Iterator iter = attributeMap.keySet().iterator();
 while (iter.hasNext()) {
 String attName = (String) iter.next();
 String attValue = (String) attributeMap.get(attName);
 doc.add(Field.Keyword(attName, attValue));
 }
 }
 else {
 doc.add(Field.Keyword(qName, elementBuffer.toString()));
 }
 }

 public static void main(String args[]) throws Exception {
 SAXXMLHandler handler = new SAXXMLHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

The five key methods in this listing are getDocument, startDocument, startElement,
characters, and endElement. Also note the elementBuffer StringBuffer and the
attributeMap HashMap. The former is used to store the textual representation of
the CDATA enclosed by the current document element. Some elements may con-
tain attributes, such as the <contact> element containing attribute type, in our
address book entry. The attributeMap is used for storing names and the value of
the current element’s attributes.

The getDocument method doesn’t do much work: It creates a new SAX parser and
passes it a reference to the InputStream of the XML document. From there, the
parser implementation calls the other four key methods in this class, which together
create a Lucene Document that is eventually returned by the getDocument method.
In startDocument, which is called when XML document parsing starts, we only
create a new instance of Lucene Document. This is the Document that we’ll eventu-
ally populate with Fields.
The startElement method is called whenever the beginning of a new XML ele-
ment is found. We first erase the elementBuffer StringBuffer by setting its
length to zero, and clear the attributeMap to remove data associated with the

Called when closing XML
elements are processed

 f

 b

 c

 d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

230 CHAPTER 7
Parsing common document formats
previous element. If the current element has attributes, we iterate through them
and save their names and values in the attributeMap. In the case of the XML
document in listing 7.2, this happens only when startElement method is called
for the <contact> element, because only that element has an attribute.
The characters method may be called multiple times during the processing of a
single XML element. In it we append to our elementBuffer the element contents
passed into the method.
The last method of interest is endElement, where you can finally see more of
Lucene in action. This method is called when the parser processes the closing
tag of the current element. Therefore, this is the method where we have all the
information about the XML element that was just processed. We aren’t interested
in indexing the top-level element, <address-book>, so we immediately return
from the method in that case. Similarly, we aren’t interested in indexing the
<contact> element. However, we are interested in indexing that <contact>’s
attributes, so we use attributeMap to get attribute names and values, and add
them to the Lucene Document. All other elements of our address book entry are
treated equally, and we blindly index them as keyword Field.Keyword. Attribute
values as well element data are indexed.

If you look back to table 7.1, you’ll see that the XML parser in listing 7.3 follows
all the steps we outlined. As a result, we get a ready-to-index Lucene Document
populated with Fields whose names are derived from XML elements’ names and
whose values correspond to the textual content of those elements. Although this
code alone will let you index XML documents, let’s look at another handy tool
for parsing XML: Digester.

7.2.2 Parsing and indexing using Digester

Digester, located at http://jakarta.apache.org/commons/digester, is a subproject
of the Jakarta Commons project. It offers a simple, high-level interface for map-
ping XML documents to Java objects; some developers find it easier to use than
DOM or SAX XML parsers. When Digester finds developer-defined patterns in
an XML document, it takes developer-specified actions.

 The DigesterXMLHandler class in listing 7.4 parses XML documents, such as
our address book entry (shown in listing 7.2), and returns a Lucene Document
with XML elements represented as Fields.

public class DigesterXMLHandler implements DocumentHandler {

 private Digester dig;

 e

 f

Listing 7.4 DocumentHandler using Jakarta Commons Digester to parse XML
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing XML 231
 private static Document doc;

 public DigesterXMLHandler() {

 // instantiate Digester and disable XML validation
 dig = new Digester();
 dig.setValidating(false);

 // instantiate DigesterXMLHandler class
 dig.addObjectCreate("address-book", DigesterXMLHandler.class);
 // instantiate Contact class
 dig.addObjectCreate("address-book/contact", Contact.class);

 // set type property of Contact instance when 'type'
 // attribute is found
 dig.addSetProperties("address-book/contact", "type", "type");

 // set different properties of Contact instance using
 // specified methods
 dig.addCallMethod("address-book/contact/name",
 "setName", 0);
 dig.addCallMethod("address-book/contact/address",
 "setAddress", 0);
 dig.addCallMethod("address-book/contact/city",
 "setCity", 0);
 dig.addCallMethod("address-book/contact/province",
 "setProvince", 0);
 dig.addCallMethod("address-book/contact/postalcode",
 "setPostalcode", 0);
 dig.addCallMethod("address-book/contact/country",
 "setCountry", 0);
 dig.addCallMethod("address-book/contact/telephone",
 "setTelephone", 0);

 // call 'populateDocument' method when the next
 // 'address-book/contact' pattern is seen
 dig.addSetNext("address-book/contact", "populateDocument");
 }

 public synchronized Document getDocument(InputStream is)
 throws DocumentHandlerException {

 try {
 dig.parse(is);
 }
 catch (IOException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }
 catch (SAXException e) {
 throw new DocumentHandlerException(

Rule 1: Create instance of
DigesterXMLHandler

 b

Rule 2: Create instance of Contact
 c

Rule 3: Set Contact’s type attribute
 d

Rule 4: Set Contact’s
name property

 e

Rule 5: Call populateDocument
 f

Implement
DocumentHandler interface

 g

Start parsing XML
InputStream

 h
Licensed to Jason Ruesch <krhonos713@hotmail.com>

232 CHAPTER 7
Parsing common document formats
 "Cannot parse XML document", e);
 }

 return doc;
 }

 public void populateDocument(Contact contact) {

 // create a blank Lucene Document
 doc = new Document();

 doc.add(Field.Keyword("type", contact.getType()));
 doc.add(Field.Keyword("name", contact.getName()));
 doc.add(Field.Keyword("address", contact.getAddress()));
 doc.add(Field.Keyword("city", contact.getCity()));
 doc.add(Field.Keyword("province", contact.getProvince()));
 doc.add(Field.Keyword("postalcode", contact.getPostalcode()));
 doc.add(Field.Keyword("country", contact.getCountry()));
 doc.add(Field.Keyword("telephone", contact.getTelephone()));
 }

 /**
 * JavaBean class that holds properties of each Contact
 * entry. It is important that this class be public and
 * static, in order for Digester to be able to instantiate
 * it.
 */
 public static class Contact {
 private String type;
 private String name;
 private String address;
 private String city;
 private String province;
 private String postalcode;
 private String country;
 private String telephone;

 public void setType(String newType) {
 type = newType;
 }
 public String getType() {
 return type;
 }

 public void setName(String newName) {
 name = newName;
 }
 public String getName() {
 return name;
 }

Populate Lucene
Document with Fields

 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing XML 233
 public void setAddress(String newAddress) {
 address = newAddress;
 }
 public String getAddress() {
 return address;
 }

 public void setCity(String newCity) {
 city = newCity;
 }
 public String getCity() {
 return city;
 }

 public void setProvince(String newProvince) {
 province = newProvince;
 }
 public String getProvince() {
 return province;
 }

 public void setPostalcode(String newPostalcode) {
 postalcode = newPostalcode;
 }
 public String getPostalcode() {
 return postalcode;
 }

 public void setCountry(String newCountry) {
 country = newCountry;
 }
 public String getCountry() {
 return country;
 }

 public void setTelephone(String newTelephone) {
 telephone = newTelephone;
 }
 public String getTelephone() {
 return telephone;
 }
 }

 public static void main(String[] args) throws Exception {
 DigesterXMLHandler handler = new DigesterXMLHandler();
 Document doc =
 handler.getDocument(new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://xml.apache.org/xerces2-j/
http://www.w3.org/TR/html4/

234 CHAPTER 7
Parsing common document formats
This is a lengthy piece of code, and it deserves a few explanations. In the Digester-
XMLHandler constructor we create an instance of Digester and configure it by spec-
ifying several rules. Each rule specifies an action and a pattern that will trigger the
action when encountered.

The first rule tells Digester to create an instance of the DigesterXMLHandler class
when the pattern "address-book" is found. It does that by using Digester’s
addObjectCreate method. Because <address-book> is the opening element in our
XML document, this rule is triggered first.
The next rule instructs Digester to create an instance of class Contact when it
finds the <contact> child element under the <address-book> parent, specified
with the "address-book/contact" pattern.
To handle the <contact> element’s attribute, we set the type property of the
Contact instance when Digester finds the type attribute of the <contact> element.
To accomplish that, we use Digester’s addSetProperties method. The Contact
class is written as an inner class and contains only setter and getter methods.
Our DigesterXMLHandler class contains several similar-looking rules, all of which
call Digester’s addCallMethod method. They’re used to set various Contact prop-
erties. For instance, a call such as dig.addCallMethod("address-book/contact/
name", "setName", 0) calls the setName method of our Contact instance. It does
this when Digester starts processing the <name> element, found under the parent
<address-book> and <contact> elements. The value of the setName method param-
eter is the value enclosed by <name> and </name> tags. If you consider our sample
address book from listing 7.2, this would call setName("Zane Pasolini").
We use Digester’s addSetNext method to specify that the populateDocument(Contact)
method should be called when the closing </contact> element is processed.
The DocumentHandler’s getDocument method takes an InputStream to the XML
document to parse.
Here we begin parsing the XML InputStream.
Finally, we populates a Lucene Document with Fields containing data collected by
the Contact class during parsing.

It’s important that you consider the order in which the rules are passed to
Digester. Although we could change the order of various addSetProperties()
rules in our class and still have properly functioning code, switching the order of
addObjectCreate() and addSetNext() would result in an error.

 As you can see, Digester provides a high-level interface for parsing XML doc-
uments. Because we have specified our XML parsing rules programmatically, our
DigesterXMLHandler can parse only our address book XML format. Luckily,
Digester lets you specify these same rules declaratively using the XML schema

 b

 c

 d

 e

 f

 g

 h
 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a PDF document 235
described in the digester-rules DTD, which is included in the Digester distribu-
tion. By using such a declarative approach, you can design a Digester-based XML
parser that can be configured at runtime, allowing for greater flexibility. If you’re
curious, an example of digester-rules appears in section 10.7.

 Under the covers, Digester uses Java’s reflection features to create instances of
classes, so you have to pay attention to access modifiers to avoid stifling Digester.
For instance, the inner Contact class is instantiated dynamically, so it must be pub-
lic. Similarly, our populateDocument(Contact) method needs to be public because
it, too, will be called dynamically. Digester also required that our Document
instance be declared as static; in order to make DigesterXMLHandler thread-safe,
we have to synchronize access to the getDocument(InputStream) method.

 By now you’ve gotten a feel for how our DocumentHandler implementations
work, and you know how to use both the SAX API and Digester. Let’s move onto
the next popular format: PDF.

7.3 Indexing a PDF document

Portable Document Format (PDF) is a document format invented by Adobe Sys-
tems over a decade ago. This format goes beyond simple textual data by allowing
document authors to embed pictures, hyperlinks, colors, and more. Today, PDF
is widespread, and in some domains it’s the dominant format. For instance, offi-
cial forms such as travel visa application forms, health insurance forms, U.S. tax
declaration forms, product manuals, and so on most often come as PDF docu-
ments. Even this book is available as PDF; Manning Publications sells chapters of
most of its books electronically, allowing customers to buy individual chapters
and immediately download them.

 If you’ve ever opened PDF documents, you most likely used an application
called Adobe Reader. Although this application has a built-in search, that feature
isn’t very powerful, allowing the user only two search options: matching whole or
partial words, and running a case-sensitive or insensitive search. Your PDF search
needs may go beyond this. Moreover, what do you do if you need to search a
whole collection of PDF documents? You use Lucene, of course!

 In this section, you’ll learn how to use PDFBox, a third-party Java library, to
parse PDF documents, while sticking with our DocumentHandler interface. In
addition to our own integration of Lucene and PDFBox, we’ll show you how to
use PDFBox’s built-in Lucene integration classes.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

236 CHAPTER 7
Parsing common document formats
7.3.1 Extracting text and indexing using PDFBox

PDFBox is a free, open-source library written by Ben Litchfield; you can find it at
http://www.pdfbox.org/. There are several free tools capable of extracting text
from PDF files; we chose PDFBox for its popularity, the author’s dedicated sup-
port on the Lucene mailing lists, and the fact that this library includes classes
that work with Lucene particularly well.

 Listing 7.5 shows how to extract textual content from a PDF document, as well
as document meta-data, and create a Lucene Document suitable for indexing.

public class PDFBoxPDFHandler implements DocumentHandler {

 public static String password = "-password";

 public PDFBoxPDFHandler() {
 }

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 COSDocument cosDoc = null;
 try {
 cosDoc = parseDocument(is);
 }
 catch (IOException e) {
 closeCOSDocument(cosDoc);
 throw new DocumentHandlerException(
 "Cannot parse PDF document", e);
 }

 // decrypt the PDF document, if it is encrypted
 try {
 if (cosDoc.isEncrypted()) {
 DecryptDocument decryptor = new DecryptDocument(cosDoc);
 decryptor.decryptDocument(password);
 }
 }
 catch (CryptographyException e) {
 closeCOSDocument(cosDoc);
 throw new DocumentHandlerException(
 "Cannot decrypt PDF document", e);
 }
 catch (InvalidPasswordException e) {
 closeCOSDocument(cosDoc);
 throw new DocumentHandlerException(

Listing 7.5 DocumentHandler using the PDFBox library to extract text from
PDF files

getDocument method b

Load InputStream into memory c

Decrypt document d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a PDF document 237
 "Cannot decrypt PDF document", e);
 }
 catch (IOException e) {
 closeCOSDocument(cosDoc);
 throw new DocumentHandlerException(
 "Cannot decrypt PDF document", e);
 }

 // extract PDF document's textual content
 String docText = null;
 try {
 PDFTextStripper stripper = new PDFTextStripper();
 docText = stripper.getText(new PDDocument(cosDoc));
 }
 catch (IOException e) {
 closeCOSDocument(cosDoc);
 throw new DocumentHandlerException(
 "Cannot parse PDF document", e);
 }

 Document doc = new Document();
 if (docText != null) {
 doc.add(Field.UnStored("body", docText));
 }

 // extract PDF document's meta-data
 PDDocument pdDoc = null;
 try {
 PDDocumentInformation docInfo =
 pdDoc.getDocumentInformation();
 String author = docInfo.getAuthor();
 String title = docInfo.getTitle();
 String keywords = docInfo.getKeywords();
 String summary = docInfo.getSubject();
 if ((author != null) && !author.equals("")) {
 doc.add(Field.Text("author", author));
 }
 if ((title != null) && !title.equals("")) {
 doc.add(Field.Text("title", title));
 }
 if ((keywords != null) && !keywords.equals("")) {
 doc.add(Field.Text("keywords", keywords));
 }
 if ((summary != null) && !summary.equals("")) {
 doc.add(Field.Text("summary", summary));
 }
 }
 catch (Exception e) {
 closeCOSDocument(cosDoc);
 closePDDocument(pdDoc);
 System.err.println("Cannot get PDF document meta-data: "

Extract textual
content

 e

Save UnStored Field
in Lucene Document

 f

Extract
document
meta-data

 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

238 CHAPTER 7
Parsing common document formats
 + e.getMessage());
 }

 return doc;
 }

 private static COSDocument parseDocument(InputStream is)
 throws IOException {
 PDFParser parser = new PDFParser(is);
 parser.parse();
 return parser.getDocument();
 }

 private void closeCOSDocument(COSDocument cosDoc) {
 if (cosDoc != null) {
 try {
 cosDoc.close();
 }
 catch (IOException e) {
 // eat it, what else can we do?
 }
 }
 }

 private void closePDDocument(PDDocument pdDoc) {
 if (pdDoc != null) {
 try {
 pdDoc.close();
 }
 catch (IOException e) {
 // eat it, what else can we do?
 }
 }
 }

 public static void main(String[] args) throws Exception {
 PDFBoxPDFHandler handler = new PDFBoxPDFHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

The DocumentHandler’s getDocument method takes a reference to the PDF docu-
ment’s InputStream.
Here we load the InputStream into memory; it’s represented as an instance of a
COSDocument object.

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a PDF document 239
PDF documents can be password-protected, and PDFBox allows you to decrypt
them prior to parsing them. Our PDFBoxPDFHandler exposes the password to be
used for decryption as a public static variable, which should be explicitly set by
the caller, before parsing encrypted documents.
Now we extract the textual content from the document, ignoring formatting and
other PDF structures.
We save the UnStored Field in a Lucene Document and use the extracted text as
its value.
As you can see in this code listing, PDFBox makes use of the PDF document’s
structure and extracts the document meta-data, such as author, keywords, sum-
mary, and title, in addition to pulling out the textual content from the document
body. This allows us to add richer Documents to the index and provide better
search results in the end.

We store the meta-data in the following Fields: author, keywords, summary, and
title. We have to be careful not to store null values, because null Fields are
invalid. We also don’t want to store blank Fields, so we perform appropriate
checks before adding meta-data to an instance of Lucene Document.

 Since document meta-data isn’t crucial to have, if PDFBox throws an IOExcep-
tion while extracting meta-data we choose only to print out a warning instead of
throwing a DocumentHandlerException.

7.3.2 Built-in Lucene support

Listing 7.5 demonstrates the low-level way of extracting data from a PDF docu-
ment. The PDFBox distribution also comes with two classes that Lucene users may
want to consider using if you don’t need fine control over Lucene Document cre-
ation. If you just need a quick way to index a directory of PDF files or a single PDF
file, of if you only want to test PDFBox, you can use the Lucene support built into
PDFBox. This approach can be quick, as you’re about to see, but it also limits what
is extracted from the PDF file, what Lucene Document Fields are created, and how
they’re analyzed and indexed.

 PDFBox’s org.pdfbox.searchengine.lucene package contains two classes:
IndexFiles and LucenePDFDocument. We discuss them next.

Using the IndexFiles class
IndexFiles is a simple class that exposes a single method for indexing a single
file system directory. Here’s how you can use it:

public class PDFBoxIndexFiles {
 public static void main(String[] args) throws Exception {

 d

 e

 f

 g
Licensed to Jason Ruesch <krhonos713@hotmail.com>

240 CHAPTER 7
Parsing common document formats
 IndexFiles indexFiles = new IndexFiles();
 indexFiles.index(new File(args[0]), true, args[1]);
 }
}

This code calls the index method in IndexFiles class passing it arguments from
the command line. The output of this program is as follows (of course, you have
to ensure that your classpath includes the PDFBox and Lucene JARs, as well as
the JAR that comes with this book):

$ java lia.handlingtypes.pdf.PDFBoxIndexFiles
 /home/otis/PDFs /tmp/pdfindex

Indexing PDF document: /home/otis/PDFs/Concurrency-j-jtp07233.pdf
Indexing PDF document: /home/otis/PDFs/CoreJSTLAppendixA.pdf
Indexing PDF document: /home/otis/PDFs/CoreJSTLChapter2.pdf
Indexing PDF document: /home/otis/PDFs/CoreJSTLChapter5.pdf
Indexing PDF document: /home/otis/PDFs/Google-Arch.pdf
Indexing PDF document: /home/otis/PDFs/JavaCookbook-Chapter22-RMI.pdf
Indexing PDF document: /home/otis/PDFs/JavaSockets.pdf
Indexing PDF document: /home/otis/PDFs/LinuxBackup.pdf
Indexing PDF document: /home/otis/PDFs/SEDA.pdf
Indexing PDF document: /home/otis/PDFs/ViTutorialWithCheatSheet.pdf
Indexing PDF document: /home/otis/PDFs/design-patterns.pdf
Indexing PDF document: /home/otis/PDFs/jndi.pdf
Indexing PDF document: /home/otis/PDFs/pagerank.pdf
Indexing PDF document: /home/otis/PDFs/servlet-2_3-fcs-spec.pdf
Indexing PDF document: /home/otis/PDFs/tilesAdvancedFeatures.pdf
Optimizing index...
42971 total milliseconds

The IndexFiles class did everything for us: It found all the PDFs in a given direc-
tory, it parsed them, and it indexed them with Lucene. This may be a bit too
much for those who like to keep some control in their own hands. Thus, PDFBox
comes with a LucenePDFDocument class that’s even simpler: It parses a given PDF
file and returns a populated Lucene Document instance. Let’s see how it works.

Using the LucenePDFDocument class
The LucenePDFDocument class is somewhat similar to our DocumentHandler’s
getDocument(InputStream) method. It offers two static methods that return a
Lucene Document when passed an instance of File or an instance of a URL object.
The following code demonstrates the use of the method that takes a File object
as a parameter:

public class PDFBoxLucenePDFDocument {
 public static void main(String[] args) throws Exception {
 Document doc = LucenePDFDocument.getDocument(new File(args[0]));
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing an HTML document 241
 System.out.println(doc);
 }
}

This class is a simple wrapper around PDFBox’s LucenePDFDocument class. After
adding all the needed JARs to the classpath, we pass the name of the file speci-
fied on the command line to this class and then print out the resulting Lucene
Document. As shown here, this class creates a Lucene Document with Fields named
summary, producer, contents, modified, url, and path:

$ java lia.handlingtypes.pdf.PDFBoxLucenePDFDocument
➾ /home/otis/PDFs/Google-Arch.pdf
Document<Unindexed<summary:22
Few Web services require as much
computation per request as search engines.
On average, a single query on Google reads
hundreds of megabytes of data and consumes
tens of billions of CPU cycles. Supporting a
peak request stream of thousands of queries
per second requires an infrastructure compa-
rable in size to that of the largest supercom-
puter installations. Combining more than
15,000 commodity-class PCs with fault-tol-
erant software creates a solution that is more
cost-effective than a c>
Text<Producer:Acrobat Distiller 4.05 for Macintosh>
Text<CreationDate:0demeknhc>
Text<contents:java.io.InputStreamReader@1193779>
org.apache.lucene.document.Field@8916a2
Keyword<modified:0dhb25ujs>
Unindexed<url:/home/otis/PDFs/Google-Arch.pdf>
Unindexed<path:/home/otis/PDFs/Google-Arch.pdf>>

PDFBox and Lucene make a good couple. More important, they make it easy for
us to make collections of PDF documents searchable.

7.4 Indexing an HTML document

HTML is everywhere. Most web documents are in HTML format. The Web is cur-
rently the largest repository of information on the planet. Add two and two
together, and it’s clear that we need to be able to index and search volumes of
existing HTML documents. That is the bread and butter of web search engines,
and many companies have built businesses based on this need. Parsing HTML is
nontrivial, though, because many sites still don’t conform to the latest W3C stan-
dards for XHTML (HTML as an XML dialect). Specialized parsers have been
developed that can leniently interpret various bastardizations of HTML.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

242 CHAPTER 7
Parsing common document formats
7.4.1 Getting the HTML source data

Listing 7.6 contains the HTML document that we’ll be parsing using the HTML
parsers featured in this section. A large percentage of HTML documents avail-
able on the Web aren’t well formed, and not all parsers deal with that situation
equally well. In this section, we use the JTidy and NekoHTML parsers, both of
which are solid HTML parsers capable of dealing with broken HTML.

<html>
 <head>
 <title>
 Laptop power supplies are available in First Class only
 </title>
 </head>
 <body>
 <h1>Code, Write, Fly</h1>
 This chapter is being written 11,000 meters above New Foundland.
 </body>
</html>

Now that we have some HTML to work with, let’s see how we can process it with
JTidy.

7.4.2 Using JTidy

With a decade behind it, Tidy is an old-timer among HTML parsers. The origi-
nal Tidy was implemented in C by Dave Raggett, but the project’s development
stopped in 2000. A group of enthusiastic developers recently took over the
project and gave it a second life. Tidy is now actively developed at http://
tidy.sourceforge.net/.

 JTidy is a Java port of Tidy, written by Andy Quick; its home is at http://
jtidy.sourceforge.net/. After four years without a release, the JTidy project
recently got a new project administrator and developer, Fabrizio Giustina; he
started working on JTidy at the beginning of 2004 and began preparing it for
new releases.

 The code in listing 7.7 represents a JTidy-based implementation of our
DocumentHandler interface. JTidy is invoked by its parseDOM method, to which
we pass an HTML document’s InputStream. From there on we use standard DOM
API methods to get textual values for two HTML elements that we want to index:
the document’s title and body.

Listing 7.6 The HTML document that we’ll parse, index, and ultimately search
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing an HTML document 243
public class JTidyHTMLHandler implements DocumentHandler {

 public org.apache.lucene.document.Document
 getDocument(InputStream is) throws DocumentHandlerException {

 Tidy tidy = new Tidy();
 tidy.setQuiet(true);
 tidy.setShowWarnings(false);
 org.w3c.dom.Document root = tidy.parseDOM(is, null);
 Element rawDoc = root.getDocumentElement();

 org.apache.lucene.document.Document doc =
 new org.apache.lucene.document.Document();

 String title = getTitle(rawDoc);
 String body = getBody(rawDoc);
 if ((title != null) && (!title.equals(""))) {
 doc.add(Field.Text("title", title));
 }
 if ((body != null) && (!body.equals(""))) {
 doc.add(Field.Text("body", body));
 }

 return doc;
 }

 /**
 * Gets the title text of the HTML document.
 *
 * @rawDoc the DOM Element to extract title Node from
 * @return the title text
 */
 protected String getTitle(Element rawDoc) {
 if (rawDoc == null) {
 return null;
 }

 String title = "";

 NodeList children = rawDoc.getElementsByTagName("title");
 if (children.getLength() > 0) {
 Element titleElement = ((Element) children.item(0));
 Text text = (Text) titleElement.getFirstChild();
 if (text != null) {
 title = text.getData();
 }
 }
 return title;
 }

Listing 7.7 DocumentHandler using JTidy to extract text from HTML documents

getDocument method
 b

Parse HTML
InputStream

 c

Get title d
Get text in all elements
between <body> and
</body>

 e

Get text of
first <title>

 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

244 CHAPTER 7
Parsing common document formats
 /**
 * Gets the body text of the HTML document.
 *
 * @rawDoc the DOM Element to extract body Node from
 * @return the body text
 */
 protected String getBody(Element rawDoc) {
 if (rawDoc == null) {
 return null;
 }

 String body = "";
 NodeList children = rawDoc.getElementsByTagName("body");
 if (children.getLength() > 0) {
 body = getText(children.item(0));
 }
 return body;
 }

 /**
 * Extracts text from the DOM node.
 *
 * @param node a DOM node
 * @return the text value of the node
 */
 protected String getText(Node node) {
 NodeList children = node.getChildNodes();
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < children.getLength(); i++) {
 Node child = children.item(i);
 switch (child.getNodeType()) {
 case Node.ELEMENT_NODE:
 sb.append(getText(child));
 sb.append(" ");
 break;
 case Node.TEXT_NODE:
 sb.append(((Text) child).getData());
 break;
 }
 }
 return sb.toString();
 }

 public static void main(String args[]) throws Exception {
 JTidyHTMLHandler handler = new JTidyHTMLHandler();
 org.apache.lucene.document.Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

Get references to
<body>

 g

Extract all text between
<body> and </body>

 h

Extract all text in all elements
under specified Node

 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing an HTML document 245
DocumentHandler’s getDocument method, to which we pass HTML document’s
InputStream, calls JTidy’s DOM parser and then creates a Lucene Document.
The call to JTidy’s parseDOM method parses the given HTML InputStream and
forms a DOM tree, suitable for traversal.
The call to getTitle gets the textual value of the HTML document title. This text
is then used to populate the Lucene Document instance.
The call to getBody gets the full text of the HTML document. This text is then
used to populate the Lucene Document instance.
The getTitle method traverses the DOM tree and returns the textual value of the
first <title> element it finds.
We use the standard DOM API call to get a list of references to all <body> ele-
ments. Normally there is just one <body> container element present in an
HTML document.
The getBody method calls the generic getText method to pull out all the text
from the HTML document. All text found between <body> and </body> elements
is returned.
The getText method is a generic method for extracting all text found in all ele-
ments under the specified DOM Node.

As was the case elsewhere in this chapter, Fields can be null or empty, so we per-
form the necessary checks before adding title and body to the index. Because
the DOM API contains a class called Document (org.w3c.dom.Document), we avoid
namespace clashes with Lucene’s Document by using fully qualified class names
for both Document classes.

 Next, let’s look at JTidy’s younger cousin, NekoHTML.

7.4.3 Using NekoHTML

NekoHTML is a relative newcomer to the work of HTML parsers, but its author
Andy Clark is not. His is a known name in the world of parsers, and a lot of his
work can be found in the Xerces-J XML parser. As such, it’s no surprise that
NekoHTML is written using the Xerces Native Interface (XNI), which is the foun-
dation of the Xerces2 implementation.

 NekoHTML is a simple HTML scanner and tag balancer that enables applica-
tion programmers to parse HTML documents and access them using standard
XML interfaces. The parser can scan HTML files and fix up a number of com-
mon mistakes that human and computer authors make in writing HTML docu-
ments. NekoHTML adds missing parent elements, automatically closes elements
with optional end tags, and can handle mismatched inline element tags.

 b

 c

 d

 e

 f

 g

 h

 i
Licensed to Jason Ruesch <krhonos713@hotmail.com>

246 CHAPTER 7
Parsing common document formats
 NekoHTML is part of Andy Clark’s set of CyberNeko Tools for XNI; you can
find it at http://www.apache.org/~andyc/neko/doc/index.html. Listing 7.8 shows
our DocumentHandler implementation based on NekoHTML. It uses the DOM
API, just like the JTidy example. However, here we go a step further and provide
a bit more general implementation in the two getText methods.

public class NekoHTMLHandler implements DocumentHandler {
 private DOMFragmentParser parser = new DOMFragmentParser();

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 DocumentFragment node =
 new HTMLDocumentImpl().createDocumentFragment();
 try {
 parser.parse(new InputSource(is), node);
 }
 catch (IOException e) {
 throw new DocumentHandlerException(
 "Cannot parse HTML document: ", e);
 }
 catch (SAXException e) {
 throw new DocumentHandlerException(
 "Cannot parse HTML document: ", e);
 }

 org.apache.lucene.document.Document doc =
 new org.apache.lucene.document.Document();

 StringBuffer sb = new StringBuffer();
 getText(sb, node, "title");
 String title = sb.toString();

 sb.setLength(0);
 getText(sb, node);
 String text = sb.toString();

 if ((title != null) && (!title.equals(""))) {
 doc.add(Field.Text("title", title));
 }
 if ((text != null) && (!text.equals(""))) {
 doc.add(Field.Text("body", text));
 }

 return doc;
 }

Listing 7.8 DocumentHandler using the NekoHTML to extract text from HTML
documents

Neko’s DOM parser for HTML
 b

getDocument method c

Create
DocumentFragment

 d

Parse InputStream e

Extract/
store text
of <title>

 f

Clear StringBuffer g

Extract all text
from DOM Node

 h
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing an HTML document 247
 private void getText(StringBuffer sb, Node node) {
 if (node.getNodeType() == Node.TEXT_NODE) {
 sb.append(node.getNodeValue());
 }
 NodeList children = node.getChildNodes();
 if (children != null) {
 int len = children.getLength();
 for (int i = 0; i < len; i++) {
 getText(sb, children.item(i));
 }
 }
 }

 private boolean getText(StringBuffer sb, Node node,
 String element) {
 if (node.getNodeType() == Node.ELEMENT_NODE) {
 if (element.equalsIgnoreCase(node.getNodeName())) {
 getText(sb, node);
 return true;
 }
 }
 NodeList children = node.getChildNodes();
 if (children != null) {
 int len = children.getLength();
 for (int i = 0; i < len; i++) {
 if (getText(sb, children.item(i), element)) {
 return true;
 }
 }
 }
 return false;
 }

 public static void main(String args[]) throws Exception {
 NekoHTMLHandler handler = new NekoHTMLHandler();
 org.apache.lucene.document.Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);

 }
}

NekoHTML offers several HTML parsers. In this implementation we use
NekoHTML’s DOMFragmentParser, which is capable of processing even incomplete
HTML documents.
The implementation of DocumentHandler’s getDocument method takes the HTML
document as InputStream, uses NekoHTML’s API to parse it into a DOM tree, and
then pulls the needed textual values from the tree.

Extract all text
from DOM Node
that represents
specified element

 i

Extract text from Nodes that represent specified element j

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

248 CHAPTER 7
Parsing common document formats
We create a blank instance of Xerces’ DocumentFragment class that we’ll later pop-
ulate with DOM data.
The call to NekoHTML’s parser processes the given InputStream and stores its DOM
representation in the blank DocumentFragment instance that we created earlier.
We extract the text of the <title> element in the given DOM Node by calling one
version of the generic getText method. The textual value is stored in the speci-
fied StringBuffer.
Recycling the StringBuffer isn’t necessary, but we do it anyway, just to be nice.
Using the other variant of the generic getText method, we extract all of the
HTML document’s text.
The generic and recursive getText method is used to extract textual values from
all DOM Nodes that contain text. The getText(StringBuffer, Node) method pulls
all textual data it finds in the HTML document. It does so by calling itself recur-
sively as it traverses the DOM tree and collecting text from all DOM text Nodes on
the way. Because we use this version of the getText method to get the body of
our sample HTML document, we end up collecting all textual data from the doc-
ument, not just that found between the <body> and </body> elements.
This is another variant of the generic and recursive getText method. This one,
however, limits itself to DOM Nodes with the given name. We used this method to
extract the text between <title> and </title> elements.

NOTE Although we showed you how to use its DOM parser, you should be
aware that NekoHTML also provides a SAX HTML parser.

You now know how to parse HTML, the most popular file format on the Web.
Although HTML is the dominant web file format, Microsoft Word documents still
rule in corporate environments. Let’s look how to parse them.

7.5 Indexing a Microsoft Word document

Like it or not, virtually every business on Earth uses Microsoft Word.2 If you were
to print all the MS Word documents in existence and stack them on top of each
other, you could probably reach far-away planets in our solar system. How do you
drill through such a big pile of killed trees to find something you’re looking for?
Instead of printing anything, you read the following section and learn how to
parse MS Word documents and make them searchable with Lucene.

 d

 e

 f

 g
 h

 i

 j

2 Painfully, even this book was written in Microsoft Word.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a Microsoft Word document 249
 Unlike all other document formats covered in this chapter, the format of MS
Word documents is proprietary. In other words, Microsoft Corporation keeps the
exact format a secret, making it difficult for others to write applications to read
and write documents in MS Word format. Luckily, several open-source projects
made it their goal to overcome this obstacle. In this section, you’ll see how to use
tools created by two such projects: Jakarta POI and TextMining.org text extractors.

7.5.1 Using POI

POI is a Jakarta project; you can find it at http://jakarta.apache.org/poi. It’s a
highly active project whose goal is to provide a Java API for manipulation of var-
ious file formats based on Microsoft’s OLE 2 Compound Document format.
Thus, POI lets you extract textual data from Microsoft Word documents, as well
as Excel and other documents, using the OLE 2 Compound Document format.

 In the example presented in listing 7.9, we use a single POI class, WordDocument,
to extract text from a sample Microsoft Word document; we then use the text to
populate a Lucene Document instance. In addition to the document contents,
Microsoft Word documents also hold some meta-data, such as the document sum-
mary and the name of the author; although our example doesn’t extract this
meta-data, you can certainly use POI for that, if you need to index document
meta-data, too.

public class POIWordDocHandler implements DocumentHandler {

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 String bodyText = null;

 try {
 WordDocument wd = new WordDocument(is);
 StringWriter docTextWriter = new StringWriter();
 wd.writeAllText(new PrintWriter(docTextWriter));
 docTextWriter.close();
 bodyText = docTextWriter.toString();
 }
 catch (Exception e) {
 throw new DocumentHandlerException(
 "Cannot extract text from a Word document", e);
 }

 if ((bodyText != null) && (bodyText.trim().length() > 0)) {
 Document doc = new Document();

Listing 7.9 POI DocumentHandler for parsing Microsoft Word documents

getDocument method b

Extract textual
data from MS
Word document

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

250 CHAPTER 7
Parsing common document formats
 doc.add(Field.UnStored("body", bodyText));
 return doc;
 }
 return null;
 }

 public static void main(String[] args) throws Exception {
 POIWordDocHandler handler = new POIWordDocHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

This is the DocumentHandler’s getDocument method, to which we pass the MS
Word document’s InputStream.
POI makes text extraction simple. Its WordDocument class readily takes a reference
to the InputStream of a Microsoft Word document and allows us to extract the
text by writing it to a Writer class. Since we need the text in a String variable, we
use the combination of StringWriter and PrintWriter to get the document’s tex-
tual value. Any structure is discarded. Like the other examples in this chapter, we
save this data in a body Field.

Simple, isn’t it? Believe it or not, TextMining.org text extractors, described next,
make this task even simpler.

7.5.2 Using TextMining.org’s API

The TextMining.org API provides an alternative interface to the Jakarta POI
API, making text extraction from Microsoft Word documents a breeze. It’s inter-
esting to note that Ryan Ackley, the author of the TextMining.org text extractors,
is also one of the developers of the Jakarta POI project. Besides the simpler API,
you ought to be aware of the following advantages that the TextMining.org
API has over POI:

■ This library is optimized for extracting text. POI is not.
■ The TextMining.org library supports extracting text from Word 6/95, whereas

POI does not.
■ The TextMining.org library doesn’t extract deleted text that is still present

in the document for the purposes of revision marking. On the other hand,
POI doesn’t handle this.

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a Microsoft Word document 251
Listing 7.10 shows you how easy it is to use the TextMining.org toolkit: It takes
only one line!

public class TextMiningWordDocHandler implements DocumentHandler {

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 String bodyText = null;
 try {
 bodyText = new WordExtractor().extractText(is);
 }
 catch (Exception e) {
 throw new DocumentHandlerException(
 "Cannot extract text from a Word document", e);
 }

 if ((bodyText != null) && (bodyText.trim().length() > 0)) {
 Document doc = new Document();
 doc.add(Field.UnStored("body", bodyText));
 return doc;
 }
 return null;
 }

 public static void main(String[] args) throws Exception {
 TextMiningWordDocHandler handler =
 new TextMiningWordDocHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

This is the DocumentHandler’s getDocument method to which we pass the MS Word
document InputStream.
TextMining.org’s simple API requires that we deal with only a single class, Word-
Extractor, and a single method of that class, extractText(InputStream), which
pulls all of the Microsoft Word document’s text into a string. Once we have a ref-
erence to the document’s text, we add it to an instance of a Lucene Document the
same way we have been doing in other examples in this chapter.

Next, you’ll learn how to parse RTF documents. Although such documents aren’t
nearly as popular as Microsoft Word documents, the RTF format is attractive
because it offers platform and application portability.

Listing 7.10 TextMining.org DocumentHandler for Microsoft Word documents

getDocument method b

Extract raw text
from InputStream

 c

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

252 CHAPTER 7
Parsing common document formats
7.6 Indexing an RTF document

Although we needed third-party libraries to extract text from all rich media doc-
uments covered in this chapter, for documents in Rich Text Format (RTF) we can
use classes that are part of Java’s standard distribution. They hide in the
javax.swing.text and javax.swing.text.rtf packages but deliver the promised
functionality when used, as shown in listing 7.11.

public class JavaBuiltInRTFHandler implements DocumentHandler {

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 String bodyText = null;
 DefaultStyledDocument styledDoc = new DefaultStyledDocument();
 try {
 new RTFEditorKit().read(is, styledDoc, 0);
 bodyText = styledDoc.getText(0, styledDoc.getLength());
 }
 catch (IOException e) {
 throw new DocumentHandlerException(
 "Cannot extract text from a RTF document", e);
 }
 catch (BadLocationException e) {
 throw new DocumentHandlerException(
 "Cannot extract text from a RTF document", e);
 }

 if (bodyText != null) {
 Document doc = new Document();
 doc.add(Field.UnStored("body", bodyText));
 return doc;
 }
 return null;
 }

 public static void main(String[] args) throws Exception {
 JavaBuiltInRTFHandler handler = new JavaBuiltInRTFHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

Listing 7.11 DocumentHandler using Java’s built-in RTF text extractor

getDocument method b

Instance of javax.swing.text.Document

 c

Load InputStream d

Extract text
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Indexing a plain-text document 253
This is the DocumentHandler’s getDocument method, to which we pass the RTF
document’s InputStream.
We instantiate the specific implementation of the javax.swing.text.Document
interface and later use it to read in the RTF document contents.
To extract text from a RTF document, we use Java’s built-in RTFEditorKit class.
With its read method, we read our RTF document into an instance of Default-
StyledDocument.
To get all text from the RTF document we read it in full from the DefaultStyled-
Document. This class implements a javax.swing.text.Document interface, which
allows us to get any range of document characters. We are, of course, interested
in all textual data, so we specify the range from the very first to the very last char-
acter. By specifying different offset and length we could have extracted only a
portion of the whole text.

After all the text has been pulled out of the RTF document, we see the familiar
block of code that adds the extracted text to a Lucene Document as Field.UnStored.
Our last DocumentHandler will handle plain-text files. Let’s take a look.

7.7 Indexing a plain-text document

Finally, let’s implement a DocumentHandler for plain-text documents, shown in
listing 7.12. This is the simplest class in this chapter, and it requires very little
explanation because it uses only the familiar, core Java classes—it has no third-
party dependencies.

public class PlainTextHandler implements DocumentHandler {

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 String bodyText = "";

 try {
 BufferedReader br =
 new BufferedReader(new InputStreamReader(is));
 String line = null;
 while ((line = br.readLine()) != null) {
 bodyText += line;
 }
 br.close();
 }
 catch(IOException e) {

 b

 c

 d

 e

Listing 7.12 Plain-text DocumentHandler using only core Java classes

getDocument method b

Read InputStream
a line at a time

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

254 CHAPTER 7
Parsing common document formats
 throw new DocumentHandlerException(
 "Cannot read the text document", e);
 }

 if (!bodyText.equals("")) {
 Document doc = new Document();
 doc.add(Field.UnStored("body", bodyText));
 return doc;
 }

 return null;
 }

 public static void main(String[] args) throws Exception {
 PlainTextHandler handler = new PlainTextHandler();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

This is the DocumentHandler’s getDocument method, to which we pass the plain-
text document’s InputStream.
This DocumentHandler implementation reads the plain-text document a line at a
time and appends each line to a String, which ends up containing the full con-
tent of the original document. This text is then indexed as a Field.UnStored
called body.

As we stated in the introduction to this chapter, our goal is to create a small frame-
work for parsing and indexing document of various formats. All the Document-
Handler implementations presented so far are the first step in that direction. We
now move on to our next step, where things get interesting: We’ll begin gluing
things together, and the framework will start to take shape.

7.8 Creating a document-handling framework

So far in this chapter, we’ve presented standalone solutions: individual Document-
Handler implementations for parsing several common document formats.
Because all the classes we’ve presented implement our generic DocumentHandler
interface, defined at the beginning of this chapter, it’s easy to create a minimal
framework for handling and indexing documents of various types without worry-
ing about individual files’ formats.

 b

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating a document-handling framework 255
 To our existing infrastructure, consisting of the DocumentHandler interface and
accompanying DocumentHandlerException, we now add a new FileHandler inter-
face and FileHandlerException. Furthermore, we implement the FileHandler
interface with a class called ExtensionFileHandler. Table 7.2 summarizes the
framework components.

Finally, we create a FileIndexer command-line application that uses all of the
components listed in figure 7.1 as well as all the parsers presented in this chapter.
This ready-to-use application can recursively traverse file-system directories,
along the way indexing files in all the formats we’ve covered. Figure 7.1 shows the
framework after everything has been put together.

 With this high-level picture in mind, let’s take a more detailed look at the
individual components that make up the system.

7.8.1 FileHandler interface

By now you should be familiar with the DocumentHandler and a number of its
implementations. FileHandler, presented in listing 7.13, is a simple interface,
very similar to that of a DocumentHandler. However, unlike DocumentHandler, which
exposes the generic InputStream as the acceptable input type, the FileHandler
interface defines File as its input type, thus making it easier to work with for
higher-level classes that deal with File objects.

Table 7.2 Java classes that compose a file-indexing framework

Java class Purpose

DocumentHandler Defines the getDocument(InputStream) method implemented
by all document parsers

DocumentHandlerException Checked exception thrown by all parsers in case of error

FileHandler Defines the getDocument(File) method implemented by
ExtensionFileHandler

FileHandlerException Checked exception thrown by concrete FileHandler
implementations

ExtensionFileHandler Implementation of FileHandler that acts as a façade for individ-
ual DocumentHandler implementations, by invoking the appropri-
ate parser based on the extension of the file passed to it via the
getDocument(File) method
Licensed to Jason Ruesch <krhonos713@hotmail.com>

256 CHAPTER 7
Parsing common document formats
public interface FileHandler {

 /**
 * Creates a Lucene Document from a File.
 * This method can return <code>null</code>.
 *
 * @param file the File to convert to a Document
 * @return a ready-to-index instance of Document
 */
 Document getDocument(File file)
 throws FileHandlerException;
}

Listing 7.13 FileHandler interface for creating Lucene Documents from files

Figure 7.1 The structure of the document-parsing framework, combined with a file-indexing
application that uses it

Convert File object to
Lucene Document
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating a document-handling framework 257
Given an instance of a File class, an implementation of the FileHandler interface
returns a populated instance of a Lucene Document to its caller. Every FileHandler
implementation wraps any exceptions it encounters and rethrows them wrapped
in a FileHandlerException, a class as boring as most other exception classes.
Instead of listing that exception class here, let’s look at ExtensionFileHandler.

7.8.2 ExtensionFileHandler

ExtensionFileHandler, shown in listing 7.14, is our only implementation of the
FileHandler interface. Its implementation of the getDocument(File) method uses
the extension of the given file to deduce the type of the file and call the appro-
priate parser implementation. Because all our parsers implement the common
DocumentHandler interface, the ExtensionFileHandler can blindly pass them the
File object wrapped in a FileInputStream, which parsers know how to handle.

/**
 * A FileHandler implementation that delegates responsibility to
 * appropriate DocumentHandler implementation, based on a file
 * extension.
 */
public class ExtensionFileHandler implements FileHandler {
 private Properties handlerProps;

 public ExtensionFileHandler(Properties props) throws IOException {
 handlerProps = props;
 }

 public Document getDocument(File file)
 throws FileHandlerException {

 Document doc = null;
 String name = file.getName();
 int dotIndex = name.indexOf(".");
 if ((dotIndex > 0) && (dotIndex < name.length())) {
 String ext = name.substring(dotIndex + 1, name.length());
 String handlerClassName = handlerProps.getProperty(ext);

 try {
 Class handlerClass = Class.forName(handlerClassName);
 DocumentHandler handler =
 (DocumentHandler) handlerClass.newInstance();
 return handler.getDocument(new FileInputStream(file));
 }
 catch (ClassNotFoundException e) {
 throw new FileHandlerException(

Listing 7.14 ExtensionFileHandler: a FileHandler based on file extensions

Map file extension b

Extract
filename
extension

 c

Look up parser
class name

 d

Pass File to parser implementation
 e
Licensed to Jason Ruesch <krhonos713@hotmail.com>

258 CHAPTER 7
Parsing common document formats
 "Cannot create instance of : "
 + handlerClassName, e);
 }
 catch (InstantiationException e) {
 throw new FileHandlerException(
 "Cannot create instance of : "
 + handlerClassName, e);
 }
 catch (IllegalAccessException e) {
 throw new FileHandlerException(
 "Cannot create instance of : "
 + handlerClassName, e);
 }
 catch (FileNotFoundException e) {
 throw new FileHandlerException(
 "File not found: "
 + file.getAbsolutePath(), e);
 }
 catch (DocumentHandlerException e) {
 throw new FileHandlerException(
 "Document cannot be handler: "
 + file.getAbsolutePath(), e);
 }
 }
 return null;
 }

 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 usage();
 System.exit(0);
 }

 Properties props = new Properties();
 props.load(new FileInputStream(args[0]));

 ExtensionFileHandler fileHandler =
 new ExtensionFileHandler(props);
 Document doc = fileHandler.getDocument(new File(args[1]));
 }

 private static void usage() {
 System.err.println("USAGE: java "
 + ExtensionFileHandler.class.getName()
 + " /path/to/properties /path/to/document");
 }
}

The Properties instance maps file extensions to the DocumentHandler classes capa-
ble of parsing files with those extensions.

Load
properties file

 f

 b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating a document-handling framework 259
To extract the filename extension, we look for the last dot in the filename and
grab everything from that offset to the end of the filename.
We use the extracted filename extension and the Properties instance to instanti-
ate the appropriate DocumentHandler.
After we dynamically instantiate our DocumentHandler, we pass it the File wrapped
by FileInputStream for parsing.
The properties file specified on the command line is loaded into the Properties
instance.

There are several important parts in this implementation worth noting. The first
thing to observe is that the only constructor is the one that takes an instance of a
Properties class. This is important because this FileHandler needs a configura-
tion that maps different file extensions to different DocumentHandler classes. Here
is an example properties file. We’ve mapped several common file extensions to
various DocumentHandler implementations presented earlier in the chapter:

txt = lia.handlingtypes.text.PlainTextHandler
html = lia.handlingtypes.html.JTidyHTMLHandler
rtf = lia.handlingtypes.rtf.JavaBuiltInRTFHandler
doc = lia.handlingtypes.msdoc.TextMiningWordDocHandler
pdf = lia.handlingtypes.pdf.PDFBoxPDFHandler
xml = lia.handlingtypes.xml.DigesterXMLHandler

Looking beyond the constructor and into the getDocument(File) method, you can
see that the code extracts the filename extension and uses it to create the appro-
priate DocumentHandler, after consulting the Properties instance set in the con-
structor. The matching DocumentHandler is dynamically instantiated, which is
possible because all DocumentHandler implementations contain a public default
constructor. Finally, the input file is converted to a FileInputStream, a subclass of
InputStream, and passed to the getDocument(InputStream) method defined in the
DocumentHandler interface. A number of exceptions that we’re catching are related
to instantiation of DocumentHandler implementations using Java reflection.

 You may choose to call ExtensionFileHandler from another Java class, but we
included the main method, which allows you to run this class from the command
line as well. Two command-line arguments must be specified: the path to the
properties file that maps file extensions to DocumentHandlers, and a path to the
file that needs to be processed.

 The main method is only a convenience method. The real power of Extension-
FileHandler is apparent when it’s called programmatically—and that is exactly
what we do from the FileIndexer application, described in the next section.

 c

 d

 e

 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

260 CHAPTER 7
Parsing common document formats
7.8.3 FileIndexer application

Listing 7.15 shows a class called FileIndexer, the final product of this chapter. It
ties together all the components described in this chapter in a command-line
application capable of recursively traversing file-system directories and indexing
all files found along the way, as long as we have a parser capable of handling
their file format. FileIndexer may remind you of the Indexer application from
section 1.4. Both of them recursively traverse file-system directories. However,
whereas Indexer is limited to indexing plain-text files, FileIndexer can parse
and index all the document formats covered in this chapter.

/**
 * A File Indexer capable of recursively indexing a directory tree.
 */
public class FileIndexer
{
 protected FileHandler fileHandler;

 public FileIndexer(Properties props) throws IOException {
 fileHandler = new ExtensionFileHandler(props);
 }

 public void index(IndexWriter writer, File file)
 throws FileHandlerException {

 if (file.canRead()) {
 if (file.isDirectory()) {
 String[] files = file.list();
 if (files != null) {
 for (int i = 0; i < files.length; i++) {
 index(writer, new File(file, files[i]));
 }
 }
 }
 else {
 System.out.println("Indexing " + file);
 try {
 Document doc = fileHandler.getDocument(file);
 if (doc != null) {
 writer.addDocument(doc);
 }
 else {
 System.err.println("Cannot handle"
 + file.getAbsolutePath() + "; skipping");
 }
 }
 catch (IOException e) {

Listing 7.15 FileIndexer: a recursive file-system indexer

ExtensionFileHandler b

index method c

Traverse readable
directories
recursively

 d

Hand off files to
ExtensionFileHandler

 e

f Add returned
Lucene Document
to index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating a document-handling framework 261
 System.err.println("Cannot index "
 + file.getAbsolutePath() + "; skipping ("
 + e.getMessage() + ")");
 }
 }
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length < 3) {
 usage();
 System.exit(0);
 }

 Properties props = new Properties();
 props.load(new FileInputStream(args[0]));

 Directory dir = FSDirectory.getDirectory(args[2], true);
 Analyzer analyzer = new SimpleAnalyzer();
 IndexWriter writer = new IndexWriter(dir, analyzer, true);

 FileIndexer indexer = new FileIndexer(props);

 long start = new Date().getTime();
 indexer.index(writer, new File(args[1]));
 writer.optimize();
 writer.close();
 long end = new Date().getTime();

 System.out.println();
 IndexReader reader = IndexReader.open(dir);
 System.out.println("Documents indexed: " + reader.numDocs());
 System.out.println("Total time: " + (end - start) + " ms");
 reader.close();
 }

 private static void usage() {
 System.err.println("USAGE: java "
 + FileIndexer.class.getName()
 + " /path/to/properties /path/to/file/or/directory"
 + “ /path/to/index”);
 }
}

FileIndexer has a private default constructor and a public constructor that
takes an instance of Properties class as a parameter for the same reasons that
ExtensionFileHandler required a Properties instance. Moreover, looking at File-
Indexer’s public constructor reveals that the specified Properties are passed to
the ExtensionFileHandler constructor.

Load properties specified
on command line

 g

Open index
 h

Create FileIndexer
instance

 i

First call to index method j

Optimize
index; close
index writer

 1)

User-friendly
summary

 1!

 b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

262 CHAPTER 7
Parsing common document formats
The meat of FileIndexer is in the index(IndexWriter, File) method. This is
where we implement file indexing.
If the specified instance of File class represents a file system directory, the
index(IndexWriter, File) method calls itself recursively.
Eventually, though, index(IndexWriter, File) calls itself with a File instance that
represents a real file. At that point the ExtensionFileHandler comes into play,
because the execution control is passed to it with a call to its getDocument(File)
method.
The call to getDocument(File) returns a populated Lucene Document, if one of
the DocumentHandler implementations was able to parse the specified file. If no
DocumentHandler was capable of processing the file, a null Lucene Document is
returned. Thus, we check the returned object for null, and add it to the Lucene
index only if the Document isn’t null.
The properties file specified on the command line is loaded into an instance of
Properties.
The index to which all Files converted to Lucene Documents are added to is
opened for writing with Lucene’s IndexWriter class.
The instance of FileIndexer to perform directory traversal and file indexing is cre-
ated with the Properties that will eventually be passed to ExtensionFileHandler.
The first call to FileIndexer’s index method starts directory and file processing.
We pass it the IndexWriter we previously opened, and the starting point—the
name of the file or directory specified on the command line.
Once it has traversed the whole directory tree, the recursive index method
returns the execution control to its caller. It’s then the responsibility of the caller
to handle the IndexWriter properly by closing it, optionally optimizing it first.
Our user-friendly summary informs the user about the number of files indexed
and the time taken.

7.8.4 Using FileIndexer

The FileIndexer class includes a main method that can be used to invoke the
class from the command line and recursively index files in a given directory tree.
To run FileIndexer from the command line, pass it a path to the properties file
as the first argument, similar to the one shown in the following example; as a
second argument, pass it a path to a directory tree or a single file that you want
to index:

$ java lia.handlingtypes.framework.FileIndexer
➾ ~/handler.properties ~/data ~/index
Indexing /home/otis/data/FileWithoutExtension
Cannot handle /home/otis/data/FileWithoutExtension; skipping

 c

 d

 e

 f

 g

 h

 i

 j

 1)

 1!
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Creating a document-handling framework 263
Indexing /home/otis/data/HTML.html
Indexing /home/otis/data/MSWord.doc
Indexing /home/otis/data/PlainText.txt
Indexing /home/otis/data/PowerPoint.ppt
Cannot handle /home/otis/data/PowerPoint.ppt; skipping
Indexing /home/otis/data/RTF.rtf
Indexing /home/otis/data/addressbook-entry.xml

Documents indexed: 6
Total time: 3046 ms

As it works through a directory tree, FileIndexer prints out information about its
progress. You can see here that it indexes only files with extensions we have
mapped to specific DocumentHandlers; all other files are skipped.

7.8.5 FileIndexer drawbacks, and how to extend the framework

This framework has one obvious, although minor, flaw: It assumes that the file
extensions don’t lie, and it requires that all files have them. For example, it assumes
that a plain-text file always has a .txt file extension, and no other; that the .doc
extension is reserved for Microsoft Word documents; and so on.

 The framework that we developed in this chapter includes parsers that can
handle the following types of input:

■ XML

■ PDF

■ HTML

■ Microsoft Word
■ RTF

■ Plain text

So, what do you do if you need to index and make searchable files of a type that
our framework doesn’t handle? You extend the framework, of course! More pre-
cisely, you follow these steps:

1 Write a parser for the desired file type and implement the DocumentHandler
interface.

2 Add your parser class to the handler.properties file, mapping it to the
appropriate file extension.

3 Keep using FileIndexer as shown.

This leads us into the next section, where you can find a list of document-parsing
tools you can use in addition to the ones presented in this chapter.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

264 CHAPTER 7
Parsing common document formats
7.9 Other text-extraction tools

In this chapter, we’ve presented text extraction from, and indexing of, the most
common document formats. We chose tools that are the most popular among
developers, tools that are still being developed (or at least maintained), and tools
that are easy to use. All libraries that we’ve presented are freely available. There
are, of course, a number of other free and commercial tools that you could use;
several that we know of are listed in table 7.3.

7.9.1 Document-management systems and services

In addition to individual libraries that you can use to implement document pars-
ing and indexing the way we did in this chapter, a few free software packages and
services already do that—and, interestingly enough, rely on Lucene to handle
document indexing:

■ DocSearcher (http://www.brownsite.net/docsearch.htm) is described by its
author as follows: “DocSearcher uses the Open Source Lucene and POI
Apache APIs as well as the Open Source PDF Box API to provide searching

Table 7.3 Tools for parsing different document formats, which can be used with Lucene to make
documents in these formats searchable

Document format Tool Where to download

PDF Xpdf http://www.foolabs.com/xpdf/

JPedal http://www.jpedal.org/

Etymon PJ http://www.etymon.com/

PDF Text Stream http://snowtide.com/home/PDFTextStream

Multivalent http://multivalent.sourceforge.net/

XML JDOM http://www.jdom.org/

Piccolo http://piccolo.sourceforge.net/

HTML HTMLParser http://htmlparser.sourceforge.net/

Multivalent http://multivalent.sourceforge.net/

Microsoft Word Antiword http://www.winfield.demon.nl/

OpenOffice SDK http://www.openoffice.org/

Microsoft Excel POI http://jakarta.apache.org/poi
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 265
capabilities for HTML, MS Word, MS Excel, RTF, PDF, Open Office (and
Star Office) documents, and text documents.”

■ Docco (http://tockit.sourceforge.net/docco/index.html) is a small, personal
document management system built on top of Lucene. It provides index-
ing and searching with Lucene; the latter is enhanced by using Formal
Concept Analysis’s visualization techniques. According to the documenta-
tion on its home page, Docco can handle a number of document formats:
plain text, XML, HTML, PDF, Microsoft Word and Excel, OpenOffice, and
StarOffice 6.0, as well as UNIX man pages. Note that the list doesn’t
include RTF documents.

■ SearchBlox (http://www.searchblox.com/) is a J2EE search component that
is deployed as a web application. It’s controlled and customized via a web
browser interface, and it can index and search HTML, PDF, Word, Excel,
and PowerPoint documents. You can read a SearchBlox case study in sec-
tion 10.3.

■ Simpy (http://www.simpy.com/) is a free online service created by one of the
authors of this book. It lets you save links to your online documents, be
they HTML web pages; PDF, Microsoft Word, or RTF documents; or any
other format. Besides the meta-data that you can enter for each document,
Simpy will crawl and index the full text of your documents, allowing you to
search them from any computer. Your documents can be kept private or
can be shared, allowing you to form online collaboration circles. Of course,
all the indexing and searching is powered by Lucene, and some portions of
the back end use Nutch (see the case study in section 10.1).

New Lucene document-management systems and services will undoubtedly
emerge after this book goes into print. A good place to look for Lucene-powered
solutions is the Lucene Wiki, as well as SourceForge.

7.10 Summary

In this code-rich chapter, you learned how to handle several common document
formats, from the omnipresent but proprietary Microsoft Word format to the
omnipresent and open HTML. As you can see, any type of data that can be con-
verted to text can be indexed and made searchable with Lucene. If you can extract
textual data from sound or graphics files, you can index those, too. As a matter of
fact, section 10.6 describes one interesting approach to indexing JPEG images.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

266 CHAPTER 7
Parsing common document formats
 We used a number of freely available parsers to parse different document for-
mats: Xerces and Digester for XML, JTidy and NekoHTML for HTML, PDFBox
for PDF, and POI and TextMining.org extractors for Microsoft Word documents.
To parse RTF and plain-text documents, we relied on core Java classes.

 Early in the chapter, we defined a DocumentHandler interface that helped us
define the standard invocation mechanism for all our document parsers. This, in
turn, made it simple for us to bundle all the parsers in a small turnkey frame-
work capable of recursively parsing and indexing a file system.

 What you’ve learned in this chapter isn’t limited to indexing files stored in
your local file system. You can use the same framework to index web pages, files
stored on remote FTP servers, files stored on remote servers on your LAN or
WAN, incoming and outgoing email or instant messenger messages, or anything
else you can turn into text. Your imagination is the limit.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Tools and
extensions
This chapter covers
■ Using Lucene’s Sandbox components
■ Working with third-party Lucene tools
267

Licensed to Jason Ruesch <krhonos713@hotmail.com>

268 CHAPTER 8
Tools and extensions
You’ve built an index, but can you browse or query it without writing code? Abso-
lutely! In this chapter, we’ll discuss three tools to do this. Do you need analysis
beyond what the built-in analyzers provide? Several specialized analyzers for
many languages are available in Lucene’s Sandbox. How about providing Google-
like term highlighting in search results? We’ve got that, too!

 This chapter examines third-party (non-Jakarta) software as well as several
Sandbox projects. Jakarta hosts a separate CVS repository where add-ons to
Lucene are kept. Deliberate care was taken with the design of Lucene to keep the
core source code cohesive yet extensible. We’re taking the same care in this book
by keeping an intentional separation between what is in the core of Lucene and
the tools and extensions that have been developed to augment it.

8.1 Playing in Lucene’s Sandbox

In an effort to accommodate the increasing contributions to the Lucene project
that are above and beyond the core codebase, a Sandbox CVS repository was cre-
ated to house them. The Sandbox is continually evolving, making it tough to
write about concretely. We’ll cover the stable pieces and allude to the other inter-
esting bits. We encourage you, when you need additional Lucene pieces, to con-
sult the Sandbox repository and familiarize yourself with what is there—you may
find that one missing piece you need. And in the same vein, if you’ve developed
Lucene pieces and want to share the maintenance efforts, contributions are more
than welcome.

 Table 8.1 lists the current major contents of the Sandbox with pointers to
where each is covered in this book.

Table 8.1 Major Sandbox component cross reference

Sandbox area Description Coverage

analyzers Analyzers for various languages Section 8.3

ant An Ant <index> task Section 8.4

db Berkeley DB Directory implementation Section 8.9

highlighter Search result snippet highlighting Section 8.7

javascript Query builder and validator for web browsers Section 8.5

lucli Command-line interface to interact with an index Section 8.2.1

miscellaneous A few odds and ends, including the ChainedFilter Section 8.8

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 269
There are a few more Sandbox components than those we cover in this chapter.
Refer to the Sandbox directly to dig around and to see any new goodies since
this was printed.

8.2 Interacting with an index

You’ve created a great index. Now what? Wouldn’t it be nice to browse the index
and perform ad hoc queries? You will, of course, write Java code to integrate
Lucene into your applications, and you could fairly easily write utility code as a
JUnit test case, a command-line utility, or a web application to interact with the
index. Thankfully, though, some nice utilities have already been created to let
you interact with Lucene file system indexes. We’ll explore three such utilities,
each unique and having a different type of interface into an index:

■ lucli (Lucene Command-Line Interface)—A CLI that allows ad-hoc querying and
index inspection

■ Luke (Lucene Index Toolbox)—A desktop application with nice usability
■ LIMO (Lucene Index Monitor)—A web interface that allows remote index

browsing

8.2.1 lucli: a command-line interface

Rather than write code to interact with an index, it can be easier to do a little
command-line tap dancing for ad-hoc searches or to get a quick explanation of a
score. The Sandbox contains the Lucene Command-Line Interface (lucli) contri-
bution from Dror Matalon. Lucli provides an optional readline capability (on
supporting operating systems), which lets you scroll through a history of com-
mands and reexecute a previously entered command to enhance its usability.

 Using the WordNet index we’ll build in section 8.6 as an example, listing 8.1
demonstrates an interactive session.

snowball Sophisticated family of stemmers and wrapping analyzer Section 8.3.1

WordNet Utility to build a Lucene index from WordNet database Section 8.6

Table 8.1 Major Sandbox component cross reference (continued)

Sandbox area Description Coverage
Licensed to Jason Ruesch <krhonos713@hotmail.com>

270 CHAPTER 8
Tools and extensions
% java lucli.Lucli

Lucene CLI. Using directory:index
lucli> index ../WordNet/index
Lucene CLI. Using directory:../WordNet/index
Index has 39718 documents
All Fields:[syn, word]
Indexed Fields:[word]
lucli> search jump
Searching for: syn:jump word:jump
1 total matching documents

---------------- 0 score:1.0---------------------
syn:startle
syn:start
syn:spring
syn:skip
syn:rise
syn:parachuting
syn:leap
syn:jumpstart
syn:jumping
syn:derail
syn:bound
syn:alternate
word:jump
###
lucli> help
 count: Return the number of hits for a search.
 Example: count foo
 explain: Explanation that describes how the document
 scored against query. Example: explain foo
 help: Display help about commands.
 index: Choose a different lucene index.
 Example index my_index
 info: Display info about the current Lucene Index.
 Example:info
 optimize: Optimize the current index
 quit: Quit/exit the program
 search: Search the current index. Example: search foo
 terms: Show the first 100 terms in this index.
 Supply a field name to
 only show terms in a specific field. Example: terms
 tokens: Does a search and shows the top 10 tokens for each
 document.
 Verbose! Example: tokens foo
lucli> explain dog
Searching for: syn:dog word:dog
1 total matching documents

Listing 8.1 lucli in action

Open existing
index by path

Perform
search

Query on all
terms

lucli explanations
of commands

Search, and
explain results
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 271
Searching for: word:dog

---------------- 0 score:1.0---------------------
syn:trail
syn:track
syn:tail
syn:tag
syn:pawl
syn:hound
syn:heel
syn:frump
syn:firedog
syn:dogtooth
syn:dogiron
syn:detent
syn:click
syn:chase
syn:cad
syn:bounder
syn:blackguard
syn:andiron
word:dog
Explanation:10.896413 = fieldWeight(word:dog in 262), product of:
 1.0 = tf(termFreq(word:dog)=1)
 10.896413 = idf(docFreq=1)
 1.0 = fieldNorm(field=word, doc=262)

###

Lucli is relatively new to the scene, and as such it still has room to evolve in features
and presentation. It has a couple of limitations to note, but generally they don’t
detract from its usefulness: The current version of lucli uses the MultiFieldQuery-
Parser for search expressions and is hard-coded to use StandardAnalyzer with
the parser.

8.2.2 Luke: the Lucene Index Toolbox

Andrzej Bialecki created Luke (found at http://www.getopt.org/luke/), an elegant
Lucene index browser. This gem provides an intimate view inside a file system–
based index from an attractive desktop Java application (see figure 8.1). We
highly recommend having Luke handy when you’re developing with Lucene
because it allows for ad-hoc querying and provides insight into the terms and
structure in an index.

 Luke has become a regular part of our Lucene development toolkit. Its inter-
connected user interface allows for rapid browsing and experimentation. Luke
Licensed to Jason Ruesch <krhonos713@hotmail.com>

272 CHAPTER 8
Tools and extensions
can force an index to be unlocked when opening, optimize an index, and also
delete and undelete documents, so it’s really only for developers or, perhaps, sys-
tem administrators. But what a wonderful tool it is!

 You can launch Luke via Java WebStart from the Luke web site or install it
locally. It’s a single JAR file that can be launched directly (by double-clicking from
a file-system browser, if your system supports that) or running java –jar
luke.jar from the command line. The latest version at the time of this writing is
0.5; it embeds a prefinal release of Lucene 1.4. A separate JAR is available without
Lucene embedded; you can use it if you wish to use a different version of Lucene.1

Of course, the first thing Luke needs is a path to the index file, as shown in the
file-selection dialog in figure 8.2.

 Luke’s interface is nicely interconnected so that you can jump from one view
to another in the same context. The interface is divided into five tabs: Overview,
Documents, Search, Files, and Plugins. The Tools menu provides options to opti-
mize the current index, undelete any documents flagged for deletion, and switch
the index between compound and standard format.

Overview: seeing the big picture
Luke’s Overview tab shows the major pieces of a Lucene index, including the
number of fields, documents, and terms (figure 8.3). The top terms in one or
more selected fields are shown in the “Top ranking terms” pane. Double-clicking
a term opens the Documents tab for the selected term, where you can browse
all documents containing that term. Right-clicking a term brings up a menu
with two options: “Show all term docs” opens the Search tab for that term so all

1 The usual issues of Lucene version and index compatibility apply.

Figure 8.1
Luke’s About page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 273
documents appear in a list, and “Browse term docs” opens the Documents tab
for the selected term.

Document browsing
The Documents tab is Luke’s most sophisticated screen, where you can browse
documents by document number and by term (see figure 8.4). Browsing by docu-
ment number is straightforward; you can use the arrows to navigate through the
documents sequentially. The table at the bottom of the screen shows all stored
fields for the currently selected document.

 Browsing by term is trickier; you can go about it several ways. Clicking First
Term navigates the term selection to the first term in the index. You can scroll
through terms by clicking the Next Term button. The number of documents con-
taining a given term is shown as the “Doc freq of this term” value. To select a spe-
cific term, type all but the last character in the text box, click Next Term, and
navigate forward until you find the desired term.

 Just below the term browser is the term document browser, which lets you
navigate through the documents containing the term you selected. The First Doc

Figure 8.2 Luke: opening an index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

274 CHAPTER 8
Tools and extensions
button selects the first document that contains the selected term; and, as when
you’re browsing terms, Next Doc navigates forward.

 The selected document, or all documents containing the selected term, can also
be deleted from this screen (use caution if this is a production index, of course!).

 Another feature of the Documents tab is the “Copy text to Clipboard” feature.
All fields shown, or the selected field, may be copied to the clipboard. For exam-
ple, copying the entire document to the clipboard places the following text there:

Keyword<modified:0du3cd068>
Keyword<pubmonth:200310>
Text<title:JUnit in Action>
Keyword<category:/technology/computers/programming>
Unindexed<url:http://www.manning.com/massol>
Keyword<path:C:\dev\LuceneInAction\Manuscript\data\technology\
 computers\programming\jia.properties>
Keyword<isbn:1930110995>
Keyword<author:Vincent Massol>
Keyword<author:Ted Husted>

Figure 8.3 Luke: index overview, allowing you to browse fields and terms
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 275
NOTE It’s important to note that Luke can only work within the constraints of
a Lucene index, and unstored fields don’t have the text available in its
original form. The terms of those fields, of course, are navigable with
Luke, but those fields aren’t available in the document viewer or for
copying to the clipboard (for example, our contents field in this case).

Clicking the Show All Docs button shifts the view to the Search tab with a search
on the selected term, such that all documents containing this term are displayed.
If a field’s term vectors have been stored, the Field’s Term Vector button displays
a window showing terms and frequencies.

 One final feature of the Documents tab is the “Reconstruct & Edit” button.
Clicking this button opens a document editor allowing you to edit (delete and re-
add) the document in the index or add a new document. Figure 8.5 shows a doc-
ument being edited.

 Luke reconstructs fields that were tokenized but not stored, by aggregating in
position order all the terms that were indexed. Reconstructing a field is a poten-
tially lossy operation, and Luke warns of this when you view a reconstructed field

Figure 8.4 Luke’s Documents tab: feel the power!
Licensed to Jason Ruesch <krhonos713@hotmail.com>

276 CHAPTER 8
Tools and extensions
(for example, if stop words were removed or tokens were stemmed during the
analysis process then the original value isn’t available).

Still searching over here, boss
We’ve already shown two ways to automatically arrive at the Search tab: choosing
“Show all term docs” from the right-click menu of the “Top ranking terms” sec-
tion of the Overview tab, and clicking Show All Docs from the term browser on
the Documents tab.

 You can also use the Search tab manually, entering QueryParser expression
syntax along with your choice of Analyzer and default field. Click Search when
the expression and other fields are as desired. The bottom table shows all the
documents from the search hits, as shown in figure 8.6.

 Double-clicking a document shifts back to the Documents tab with the appro-
priate document preselected. It’s useful to interactively experiment with search
expressions and see how QueryParser reacts to them (but be sure to commit your
assumptions to test cases, too!). Luke shows all analyzers it finds in the classpath,
but only analyzers with no-arg constructors may be used with Luke. Luke also
provides insight document scoring with the explanation feature.

 To view score explanation, select a result and click the Explanation button; an
example is shown in figure 8.7.

Figure 8.5
Document editor
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 277
Files view
The final view in Luke displays the files (and their sizes) that make up the inter-
nals of a Lucene index directory. The total index size is also shown, as you can
see in figure 8.8.

Figure 8.6 Searching: an easy way to experiment with QueryParser

Figure 8.7
Lucene’s scoring explanation
Licensed to Jason Ruesch <krhonos713@hotmail.com>

278 CHAPTER 8
Tools and extensions
Plugins view
As if the features already described about Luke weren’t enough, Andrzej has gone
the extra kilometer and added a plug-in framework so that others can add tools
to Luke. One plug-in comes built in: the Analyzer Tool. This tool has the same
purpose as the AnalyzerDemo developed in section 4.2.3, showing the results of
the analysis process on a block of text. As an added bonus, highlighting a selected
token is a mere button-click away, as shown in figure 8.9.

 Consult the Luke documentation and source code for information on how to
develop your own plug-in.

Figure 8.8
Luke’s Files view shows how big an index is.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 279
8.2.3 LIMO: Lucene Index Monitor

Julien Nioche is the creator of Lucene Index Monitor (LIMO).2 It’s available
online at http://limo.sourceforge.net/. LIMO provides a web browser interface to
Lucene indexes, giving you a quick look at index status information such as
whether an index is locked, the last modification date, the number of documents,
and a field summary. In addition, a rudimentary document browser lets you scroll
through documents sequentially.

 Figure 8.10 shows the initial page, where you can select one or more precon-
figured indexes.

 To install LIMO, follow these steps:

1 Download the LIMO distribution, which is a WAR file.

2 Expand the WAR file in the Tomcat webapps/limo webapps directory.

Figure 8.9 Analyzer Tool plug-in

2 LIMO v0.3 is the most recent version at the time of this writing.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

280 CHAPTER 8
Tools and extensions
3 Edit the limo/WEB-INF/web.xml file, adding a couple of references to
Lucene index directories.

LIMO uses context parameters in the web.xml file for controlling which indexes
are made visible. One of our entries appears in web.xml like this:

<context-param>
 <param-name>LIA</param-name>
 <param-value>
 /Users/erik/dev/LuceneInAction/build/index
 </param-value>
 <description>Lucene In Action sample index</description>
</context-param>

The version of LIMO that we used embeds Lucene 1.3; if you need to use a newer
version of Lucene than LIMO embeds, replace the Lucene JAR in WEB-INF/lib by
removing the existing file and adding a newer one.

 After you follow the installation and configuration steps, start the web con-
tainer. Navigate to the appropriate URL (http://localhost:8080/limo/ in our case),
and take a seat in the LIMO. Select a configured index to browse.

Figure 8.10 LIMO: selecting an index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Interacting with an index 281
Browsing an index
LIMO’s only other screen is the index summary and document browser view. Fig-
ure 8.11 shows a sample.

 Click the Prev and Next links to navigate through the documents. All the
stored fields are shown on the right, indicating whether they are stored and/or
indexed.

Using LIMO
LIMO’s user interface isn’t fancy, but it does the job. You may want to have LIMO
installed on a secured Tomcat instance on a production server. Being able to get
a quick view of how many documents are in an index, whether it’s locked, and
when it was last updated can be helpful for monitoring purposes. Also, using the
LIMO JSP pages as a basis for building your own custom monitoring view could
be a time saver. Because LIMO functions as a web application and doesn’t allow
any destructive operations on an index, it provides a handy way to peek into a
remote index.

Figure 8.11 Cruising in the LIMO
Licensed to Jason Ruesch <krhonos713@hotmail.com>

282 CHAPTER 8
Tools and extensions
8.3 Analyzers, tokenizers, and TokenFilters, oh my

The more analyzers, the merrier, we always say. And the Sandbox doesn’t disap-
point in this area: It houses several language-specific analyzers, a few related fil-
ters and tokenizers, and the slick Snowball algorithm analyzers. The analyzers
are listed in table 8.2.

The language-specific analyzers vary in how they tokenize. The Brazilian and
French analyzers use language-specific stemming and custom stop-word lists.
The Czech analyzer uses standard tokenization, but also incorporates a custom
stop word list. The Chinese and CJK (Chinese-Japanese-Korean) analyzers token-
ize double-byte characters as a single token to keep a logical character intact. We
demonstrate analysis of Chinese characters in section 4.8.3, illustrating how
these two analyzers work.

Table 8.2 Sandbox analyzers

Analyzera

a Note the different package name for the SnowballAnalyzer—it is housed in a different sandbox directory

than the others.

TokenStream flow

org.apache.lucene.analysis.
br.BrazilianAnalyzer

StandardTokenizer ➜ StandardFilter ➜
StopFilter (custom stop table) ➜
BrazilianStemFilter ➜ LowerCaseFilter

org.apache.lucene.analysis.
cjk.CJKAnalyzer

CJKTokenizer ➜ StopFilter (custom English stop
words ironically)

org.apache.lucene.analysis.
cn.ChineseAnalyzer

ChineseTokenizer ➜ ChineseFilter

org.apache.lucene.analysis.
cz.CzechAnalyzer

StandardTokenizer ➜ StandardFilter ➜
LowerCaseFilter ➜ StopFilter (custom stop list)

org.apache.lucene.analyzer.
nl.DutchAnalyzer

StandardTokenizer ➜ StandardFilter ➜

 StopFilter (custom stop table)➜ DutchStemFilter

org.apache.lucene.analyzer.
fr.FrenchAnalyzer

StandardTokenizer ➜ StandardFilter ➜
StopFilter (custom stop table)➜ FrenchStemFilter ➜
LowerCaseFilter

org.apache.lucene.analysis.
snowball.SnowballAnalyzer

StandardTokenizer ➜ StandardFilter ➜
LowerCaseFilter [➜ StopFilter] ➜
SnowballFilter
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Analyzers, tokenizers, and TokenFilters, oh my 283
 Each of these analyzers, including the SnowballAnalyzer discussed in the next
section, lets you customize the stop-word list just as the StopAnalyzer does (see
section 4.3.1). Most of these analyzers do quite a bit in the filtering process. If
the stemming or tokenization is all you need, borrow the relevant pieces, and
construct your own custom analyzer from the parts here. Section 4.6 covers cre-
ating custom analyzers.

8.3.1 SnowballAnalyzer

The SnowballAnalyzer deserves special mention because it serves as a driver of an
entire family of stemmers for different languages. Stemming was first introduced
in section 4.7. Dr. Martin Porter, who also developed the Porter stemming algo-
rithm, created the Snowball algorithm.3 The Porter algorithm was designed for
English only; in addition, many “purported” implementations don’t adhere to
the definition faithfully.4 To address these issues, Dr. Porter rigorously defined
the Snowball system of stemming algorithms. Through these algorithmic defini-
tions, accurate implementations can be generated. In fact, the snowball project in
Lucene’s Sandbox has a build process that can pull the definitions from Dr. Por-
ter’s site and generate the Java implementation.

 One of the test cases demonstrates the result of the English stemmer strip-
ping off the trailing ming from stemming and the s from algorithms:

 public void testEnglish() throws Exception {
 Analyzer analyzer = new SnowballAnalyzer("English");

 assertAnalyzesTo(analyzer,
 "stemming algorithms", new String[] {"stem", "algorithm"});
 }

SnowballAnalyzer has two constructors; both accept the stemmer name only, and
one specifies a String[] stop-word list to use. Many unique stemmers exist for
various languages. The non-English stemmers include Danish, Dutch, Finnish,
French, German, German2, Italian, Kp (Kraaij-Pohlmann algorithm for Dutch),
Norwegian, Portuguese, Russian, Spanish, and Swedish. There are a few English-
specific stemmers named English, Lovins, and Porter. These exact names are the
valid argument values to the SnowballAnalyzer constructors. Here is an example
using the Spanish stemming algorithm:

3 The name Snowball is a tribute to the string-manipulation language SNOBOL.
4 From http://snowball.tartarus.org/texts/introduction.html
Licensed to Jason Ruesch <krhonos713@hotmail.com>

284 CHAPTER 8
Tools and extensions
 public void testSpanish() throws Exception {
 Analyzer analyzer = new SnowballAnalyzer("Spanish");

 assertAnalyzesTo(analyzer,
 "algoritmos", new String[] {"algoritm"});
 }

If your project demands stemming, we recommend that you give the Snowball
analyzer your attention first since an expert in the stemming field developed it.
And, as already mentioned but worth repeating, you may want to use the clever
piece of this analyzer (the SnowballFilter) wrapped in your own custom ana-
lyzer implementation. Several sections in chapter 4 discuss writing custom ana-
lyzers in great detail.

8.3.2 Obtaining the Sandbox analyzers

Depending on your needs, you may want JAR binary distributions of these ana-
lyzers or raw source code from which to borrow ideas. Section 8.10 provides
details on how to access the Sandbox CVS repository and how to build binary dis-
tributions. Within the repository, the Snowball analyzer resides in contributions/
snowball; the other analyzers discussed here are in contributions/analyzers.
There are no external dependencies for these analyzers other than Lucene itself,
so they are easy to incorporate. A test program called TestApp is included for the
Snowball project. It’s run in this manner:

> java –cp dist/snowball.jar net.sf.snowball.TestApp
Usage: TestApp <stemmer name> <input file> [-o <output file>]

> java -cp dist/snowball.jar
➾ net.sf.snowball.TestApp Lovins spoonful.txt
... output of stemmer applied to specified file

The Snowball TestApp bypasses SnowballAnalyzer. Only the Snowball stemmer
itself is used with rudimentary text splitting at whitespace.

8.4 Java Development with Ant and Lucene

A natural integration point with Lucene incorporates document indexing into a
build process. As part of Java Development with Ant (Hatcher and Loughran, Man-
ning Publications, 2002), Erik created an Ant task to index a directory of file-based
documents. This code has since been enhanced and is maintained in the Sandbox.

 Why index documents during a build process? Imagine a project that is pro-
viding an embedded help system with search capability. The documents are
probably static for a particular version of the system, and having a read-only
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Java Development with Ant and Lucene 285
index created at build-time fits perfectly. For example, what if the Ant, Lucene,
and other projects had a domain-specific search on their respective web sites? It
makes sense for the searchable documentation to be the latest release version; it
doesn’t need to be dynamically updated.

8.4.1 Using the <index> task

Listing 8.2 shows a simplistic Ant 1.6.x–compatible build file that indexes a
directory of text and HTML files.

<?xml version="1.0"?>
<project name="ant-example" default="index">

 <description>
 Lucene Ant index example
 </description>

 <property name="index.base.dir" location="build"/>
 <property name="files.dir" location="."/>

 <target name="index">
 <mkdir dir="${index.base.dir}"/>

 <index index="${index.base.dir}/index"
 xmlns="antlib:org.apache.lucene.ant">
 <fileset dir="${files.dir}"/>
 </index>
 </target>

</project>

The Ant integration is Ant 1.6 Antlib compatible, as seen with the xmlns specifi-
cation. The legacy <taskdef> method can still be used, too. Listing 8.2 shows the
most basic usage of the <index> task, minimally requiring specification of the
index directory and a fileset of files to consider for indexing. The default file-
handling mechanism indexes only files that end with .txt or .html.5 Table 8.3 lists
the fields created by the index task and the default document handler. Only path
and modified are fixed fields; the others come from the document handler.

Listing 8.2 Using the Ant <index> task

5 JTidy is currently used to extract HTML content for indexing. See section 7.4 for more on index-
ing HTML.

Parent of index
directory

Root directory of
documents to index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

286 CHAPTER 8
Tools and extensions
It’s very likely that the default document handler is insufficient for your needs.
Fortunately, a custom document handler extension point exists.

8.4.2 Creating a custom document handler

A swappable document-handler facility is built into the <index> task, allowing
custom implementations to handle different document types and control the
Lucene fields created.6 Not only can the document handler be specified, config-
uration parameters can be passed to the custom document handler. We used the
Ant <index> task, as shown in listing 8.3, to build the index used in the majority
of the code for this book.

<target name="build-index" depends="compile">
 <typedef resource="org/apache/lucene/ant/antlib.xml">
 <classpath>
 <path refid="compile.classpath"/>
 <pathelement location="${build.dir}/classes"/>
 </classpath>
 </typedef>

 <index index="${build.dir}/index"
 documenthandler="lia.common.TestDataDocumentHandler">
 <fileset dir="${data.dir}"/>
 <config basedir="${data.dir}"/>
 </index>
</target>

Table 8.3 <index> task default fields

Field name Field type Comments

path Keyword Absolute path to a file

modified Keyword (as Date) Last-modified date of a file

title Text <title> in HTML files; and filename for .txt files.

Contents Text Complete contents of .txt files; parsed <body> of HTML files

rawcontents UnIndexed Raw contents of the file

6 The <index> task document handler facility was developed long before the framework Otis built in
chapter 7. At this point, the two document-handling frameworks are independent of one another, al-
though they’re similar and can be easily merged.

Listing 8.3 Use of the <index> task to build the sample index for this book

<typdef> b

Use custom document handler

 c

basedir configuration property d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Java Development with Ant and Lucene 287
We use <typdef> because we need an additional dependency added to the class-
path for our document handler. If we didn’t need a custom document handler,
the <typedef> would be unnecessary.
We use a custom document handler to process files differently.
Here we hand our document handler a configuration property, basedir. This
allows relative paths to be extracted cleanly.

The directory, referred to as ${data.dir}, contains a hierarchy of folders and
.properties files. Each .properties file contains information about a single book,
as in this example:

title=Tao Te Ching \u9053\u5FB7\u7D93
isbn=0060812451
author=Stephen Mitchell
subject=taoism
pubmonth=198810
url=http://www.amazon.com/exec/obidos/tg/detail/-/0060812451

The folder hierarchy serves as meta-data also, specifying the book categories.
Figure 8.12 shows the sample data directory. For example, the .properties exam-
ple just shown is the ttc.properties file that resides in the data/philosophy/east-
ern directory. The base directory points to data and is stripped off in the
document handler as shown in listing 8.4.

 To write a custom document handler, pick one of the two interfaces to imple-
ment. If you don’t need any additional meta-data from the Ant build file, imple-
ment DocumentHandler, which has the following single method returning a Lucene
Document instance:

 b

 c
 d

Figure 8.12
Sample data directory structure,
with the file path specifying a category
Licensed to Jason Ruesch <krhonos713@hotmail.com>

288 CHAPTER 8
Tools and extensions
public interface DocumentHandler {
 Document getDocument(File file)
 throws DocumentHandlerException;
}

Implementing ConfigurableDocumentHandler allows the <index> task to pass
additional information as a java.util.Properties object:

public interface ConfigurableDocumentHandler
 extends DocumentHandler {
 void configure(Properties props);
}

Configuration options are passed using a single <config> subelement with arbi-
trarily named attributes. The <config> attribute names become the keys to the
properties. Our complete TestDataDocumentHandler class is shown in listing 8.4.

public class TestDataDocumentHandler
 implements ConfigurableDocumentHandler {
 private String basedir;

 public Document getDocument(File file)
 throws DocumentHandlerException {
 Properties props = new Properties();
 try {
 props.load(new FileInputStream(file));
 } catch (IOException e) {
 throw new DocumentHandlerException(e);
 }

 Document doc = new Document();

 // category comes from relative path below the base directory
 String category = file.getParent().substring(basedir.length());
 category = category.replace(File.separatorChar,'/');

 String isbn = props.getProperty("isbn");
 String title = props.getProperty("title");
 String author = props.getProperty("author");
 String url = props.getProperty("url");
 String subject = props.getProperty("subject");
 String pubmonth = props.getProperty("pubmonth");

 doc.add(Field.Keyword("isbn", isbn));
 doc.add(Field.Keyword("category", category));
 doc.add(Field.Text("title", title));

Listing 8.4 TestDataDocumentHandler: how we built our sample index

Get category b

Pull fields c

Add fields to
Document instance

 d
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Java Development with Ant and Lucene 289
 // split multiple authors into unique field instances
 String[] authors = author.split(",");
 for (int i = 0; i < authors.length; i++) {
 doc.add(Field.Keyword("author", authors[i]));
 }

 doc.add(Field.UnIndexed("url", url));
 doc.add(Field.UnStored("subject", subject, true));

 doc.add(Field.Keyword("pubmonth", pubmonth));

 doc.add(Field.UnStored("contents",
 aggregate(new String[] { title, subject, author})));

 return doc;
 }

 private String aggregate(String[] strings) {
 StringBuffer buffer = new StringBuffer();

 for (int i = 0; i < strings.length; i++) {
 buffer.append(strings[i]);
 buffer.append(" ");
 }

 return buffer.toString();
 }

 public void configure(Properties props) {
 this.basedir = props.getProperty("basedir");
 }
}

We base the category on the relative path from the base data directory, ensuring
that forward slashes are used as separators.
Here we pull each field from the values in the .properties file.
We add each field to the Document instance; note the different types of fields used.
The subject field is flagged for term vector storage.
The contents field is an aggregate field: We can search a single field containing
both the author and subject.

When you use a custom document handler, in addition to the fields the handler
creates, the <index> task automatically adds path and modified fields. These two
fields are used for incremental indexing, allowing only newly modified files to
be processed.

Add fields to
Document instance

 d

 e Flag
subject field

Add contents field f

 b

 c
 d
 e
 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

290 CHAPTER 8
Tools and extensions
 The build file can also control the analyzer and merge factor. The merge fac-
tor defaults to 20, but you can set it to another value by specifying mergeFactor=
"..." as an attribute to the <index> task. The analyzer is specified in one of two
ways. The built-in analyzers are available using analyzer="...", where the value
is simple, standard, stop, whitespace, german, or russian. If you need to use any
other analyzer, specify analyzerClass="..." instead, with the fully qualified class
name. Currently, only analyzers that have a no-argument constructor can be used
with <index>; this rules out using the SnowballAnalyzer directly, for example.

 There are several interesting possibilities, thanks to the flexibility of the
<index> task, such as indexing documentation in multiple languages. You may
have documents separated by directory structure (docs/en, docs/fr, docs/nl, and
so on), by filename (index.html.en, index.html.fr, and so on), or by some other
scheme. You could use the <index> task multiple times in a build process to build
a separate index for each language, or you could write them all to the same
index and use a different analyzer for each language.

8.4.3 Installation

The <index> task requires three libraries and at least Ant 1.5.4 (although Ant 1.6 or
higher is recommended to take advantage of the Antlib feature). The Lucene JAR,
JTidy’s JAR, and the JAR of the <index> task itself are required. Obtain these JARs,
place them in a single directory together, and use the –lib Ant 1.6 command-line
switch to point to this directory (or use <taskdef> with the proper classpath). See
section 8.10 for elaboration on how to obtain JARs from the Sandbox component,
and refer to Ant’s documentation and Manning’s Java Development with Ant for
specifics on working with Ant.

8.5 JavaScript browser utilities

Integrating Lucene into an application often requires placing a search interface
in a web application. QueryParser is handy, and it’s easy to expose a simple text
box allowing the user to enter a query; but it can be friendlier for users to see
query options separated into fields, such as a date-range selection in conjunction
with a text box for free-text searching. The JavaScript utilities in the Sandbox
assist with browser-side usability in constructing and validating sophisticated
expressions suitable for QueryParser.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

JavaScript browser utilities 291
8.5.1 JavaScript query construction and validation

As we’ve explored in several previous chapters, exposing QueryParser directly to
end users can lead to confusion. If you’re providing a web interface to search a
Lucene index, you may want to consider using the nicely done JavaScript query
constructor and validator in the Sandbox, originally written by fellow Lucene
developer Kelvin Tan. The javascript Sandbox project includes a sample HTML
file that mimics Google’s advanced searching options, as shown in figure 8.13.

 The query constructor supports all HTML fields including text and hidden
fields, radio buttons, and single and multiple selects. Each HTML field must have
a corresponding HTML field named with the suffix Modifier, controlling how the
terms are added to the query. The modifier field can be a hidden field to prevent
a user from controlling it, as in the case of the text fields in figure 8.12. The con-
structed query is placed in an HTML field (typically a hidden one), which is
handed to QueryParser on the server side.

 The query validator uses regular expressions to do its best approximation of
what is acceptable to QueryParser. Both JavaScript files allow customization with
features like debug mode to alert you to what is happening, modifier field suffixes,
specifying whether to submit the form upon construction, and more. The Java-
Script files are well documented and easy to drop into your own environment.

Figure 8.13 JavaScript example
Licensed to Jason Ruesch <krhonos713@hotmail.com>

292 CHAPTER 8
Tools and extensions
 At the time of this writing, the javascript Sandbox was being enhanced.
Rather than show potentially out-of-date HTML, we refer you to the examples in
the Sandbox when you need this capability.

8.5.2 Escaping special characters

QueryParser uses many special characters for operators and grouping. The char-
acters must be escaped if they’re used in a field name or as part of a term (see
section 3.5 for more details on QueryParser escape characters). Using the lucene-
QueryEscaper.js support from the Sandbox, you can escape a query string.

 You should use the query escaper only on fields or strings that should not
contain any Lucene special characters already. For example, it would be incorrect
to escape a query built with the query constructor, since any parentheses and
operators it added would be subsequently escaped.

8.5.3 Using JavaScript support

Adding JavaScript support to your HTML file only requires grabbing (see section 8.10)
the JavaScript files and referring to them in the <head> section in this manner:

<script type="text/javascript"
 src="luceneQueryConstructor.js"></script>
<script type="text/javascript"
 src="luceneQueryValidator.js"></script>
<script type="text/javascript" src="luceneQueryEscaper.js"></script>

Call doMakeQuery to construct a query and doCheckLuceneQuery to validate a
query. Both methods require a form field argument that specifies which field to
populate or validate. To escape a query, call doEscapeQuery with the form field or
a text string (it detects the type); the escaped query string will be returned.

8.6 Synonyms from WordNet

What a tangled web of words we weave. A system developed at Princeton Univer-
sity’s Cognitive Science Laboratory, driven by Psychology Professor George Miller,
illustrates the net of synonyms.7 WordNet represents word forms that are inter-
changeable, both lexically and semantically. Google’s define feature (type define:
word as a Google search, and see for yourself) often refers users to the online

7 Interestingly, this is the same George Miller who reported on the phenomenon of seven plus or minus
two chunks in immediate memory.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms from WordNet 293
WordNet system, allowing you to navigate word interconnections. Figure 8.14
shows the results of searching for search at the WordNet site.

 What does all this mean to developers using Lucene? With Dave Spencer’s
contribution to Lucene’s Sandbox, the WordNet synonym database can be
churned into a Lucene index. This allows for rapid synonym lookup—for
example, for synonym injection during indexing or querying (see section 8.6.2
for such an implementation).

Figure 8.14
Caught in the WordNet:
word interconnections
for search
Licensed to Jason Ruesch <krhonos713@hotmail.com>

294 CHAPTER 8
Tools and extensions
8.6.1 Building the synonym index

To build the synonym index, follow these steps:

1 Download and expand the prolog16.tar.gz file from the WordNet site at
http://www.cogsci.princeton.edu/~wn.

2 Obtain the binary (or build from source; see section 8.10) of the Sandbox
WordNet package.

3 Build the synonym index using the Syns2Index program from the com-
mand line. The first parameter points to the wn_s.pl file obtained in the
WordNet distribution from step 1. The second argument specifies the
path where the Lucene index will be created:

java org.apache.lucene.wordnet.Syns2Index
➾ prologwn/wn_s.pl wordnetindex

The Syns2Index program converts the WordNet Prolog synonym database into a
standard Lucene index with an indexed field word and unindexed fields syn for
each document. Version 1.6 of WordNet produces 39,718 documents, each rep-
resenting a single word; the index size is approximately 2.5MB, making it com-
pact enough to load as a RAMDirectory for speedy access.

 A second utility program in the WordNet Sandbox area lets you look up syn-
onyms of a word. Here is a sample lookup of a word near and dear to our hearts:

java org.apache.lucene.wordnet.SynLookup wordnetindex search

Synonyms found for "search":
seek
searching
research
lookup
look
hunting
hunt
explore

Figure 8.15 shows these same synonyms graphically using Luke.
 To use the synonym index in your applications, borrow the relevant pieces

from SynLookup, as shown in listing 8.5.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms from WordNet 295
public class SynLookup {

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.out.println(
 "java org.apache.lucene.wordnet.SynLookup <index path> <word>");
 }

 FSDirectory directory = FSDirectory.getDirectory(args[0], false);
 IndexSearcher searcher = new IndexSearcher(directory);

 String word = args[1];
 Hits hits = searcher.search(
 new TermQuery(new Term("word", word)));

 if (hits.length() == 0) {
 System.out.println("No synonyms found for " + word);
 } else {
 System.out.println("Synonyms found for \"" + word + "\":");
 }

Listing 8.5 Looking up synonyms from a WordNet-based index

Figure 8.15 Cool app Luke: inspecting WordNet synonyms
Licensed to Jason Ruesch <krhonos713@hotmail.com>

296 CHAPTER 8
Tools and extensions
 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);

 String[] values = doc.getValues("syn");

 for (int j = 0; j < values.length; j++) {
 System.out.println(values[j]);
 }
 }

 searcher.close();
 directory.close();
 }
}

The SynLookup program was written for this book, but it has been added into the
WordNet Sandbox codebase.

8.6.2 Tying WordNet synonyms into an analyzer

The custom SynonymAnalyzer from section 4.6 can easily hook into WordNet
synonyms using the SynonymEngine interface. Listing 8.6 contains the WordNet-
SynonymEngine, which is suitable for use with the SynonymAnalyzer.

public class WordNetSynonymEngine implements SynonymEngine {
 RAMDirectory directory;
 IndexSearcher searcher;

 public WordNetSynonymEngine(File index) throws IOException {
 directory = new RAMDirectory(
 FSDirectory.getDirectory(index, false));
 searcher = new IndexSearcher(directory);
 }

 public String[] getSynonyms(String word) throws IOException {

 ArrayList synList = new ArrayList();

 Hits hits = searcher.search(
 new TermQuery(new Term("word", word)));

 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);

 String[] values = doc.getValues("syn");

Enumerate
synonyms
for word

Listing 8.6 WordNetSynonymEngine

Load synonym
index into RAM

for rapid access
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms from WordNet 297
 for (int j = 0; j < values.length; j++) {
 synList.add(values[j]);
 }
 }

 return (String[]) synList.toArray(new String[0]);
 }
}

Adjusting the SynonymAnalyzerViewer from section 4.6 to use the WordNetSynonym-
Engine, our sample output is as follows:

1: [quick] [agile] [fast] [flying] [immediate] [nimble] [prompt]
 [promptly] [quickly] [ready] [speedy] [spry] [straightaway]
 [warm]
2: [brown] [brownish] [brownness]
3: [fox] 8 [bedevil] [befuddle] [confound] [confuse]
 [discombobulate] [dodger] [fob] [fuddle] [slyboots] [throw]
 [trick]
4: [jumps]
5: [over] [across] [o]
6: [lazy] [slothful] [otiose] [indolent] [faineant]
7: [dogs]

Interestingly, WordNet synonyms do exist for jump and dog (see the lucli output
in listing 8.1), but only in singular form. Perhaps stemming should be added to
our SynonymAnalyzer prior to the SynonymFilter, or maybe the WordNetSynonym-
Engine should be responsible for stemming words before looking them up in the
WordNet index. These are issues that need to be addressed based on your envi-
ronment. This emphasizes again the importance of the analysis process and the
fact that it deserves your attention.

 The Lucene WordNet code requires an older version (1.6) of the WordNet
database. If you want to hook into the more recent 2.x versions of WordNet, you’ll
need to either manually adjust the Lucene Sandbox code or tie into JWordNet, a
Java API into WordNet housed at http://jwn.sourceforge.net/.

8.6.3 Calling on Lucene

With the increasing pervasiveness of mobile devices and their shrinking size, we
need clever text-input methods. The T9 interface present on most phones is far

8 We’ve apparently befuddled or outfoxed the WordNet synonym database because the synonyms in-
jected for fox don’t relate to the animal noun we intended.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

298 CHAPTER 8
Tools and extensions
more efficient than requiring exact character input.9 As a prototype of something
potentially useful, we put Lucene and WordNet under a cell-phone-like Swing
interface, as shown in figure 8.16.10

 The buttons 2–9 are mapped to three or four letters of the alphabet each,
identical to an actual phone. Each click of these numbers appends the selected
digit to an internal buffer; a Lucene search is performed to match words for
those digits. The buttons that aren’t mapped to letters are used for additional
capabilities: 1 scrolls the view through the list of matching words (the status bar
shows how many words match the digits entered); the asterisk (*) backspaces one
digit, undoing the last number entered; 0 enables debugging diagnostic output
to the console; and pound (#) clears all digits entered, allowing you to start a
new entry.

Constructing the T9 index
We wrote a utility class to preprocess the original WordNet index into a special-
ized T9 index. Each word is converted into a t9 keyword field. Each word, its T9
equivalent, and the text length of the word are indexed, as shown here:

Document newDoc = new Document();
newDoc.add(Field.Keyword("word", word));
newDoc.add(Field.Keyword("t9", t9(word)));
newDoc.add(new Field("length",
 Integer.toString(word.length()), false, true, false));

9 T9 is an input method that maps each numeric button to multiple letters of the alphabet. A series of
numbers logically corresponds to a subset of sensible words. For example, 732724 spells search.

10 Many thanks to Dave Engler for building the base Swing application framework.

Figure 8.16
Cell-phone-like Swing interface
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Synonyms from WordNet 299
The t9 method is not shown, but it can be obtained from the book’s source code
distribution (see the “About this book” section). The word length is indexed as its
Integer.toString() value to allow for sorting by length using the sort feature
discussed in section 5.1.

Searching for words with T9
To have a little fun with Lucene, we query for a sequence of digits using a Boolean-
Query with a slight look-ahead so a user doesn’t have to enter all the digits. For
example, if the digits 73272 are entered, search is the first word shown, but two oth-
ers also match (secpar11 and peasant). The query uses a boosted TermQuery on the
exact digits (to ensure that exact matches come first) and a wildcard query match-
ing words with one or two more characters more. Here’s the BooleanQuery code:

BooleanQuery query = new BooleanQuery();
Term term = new Term("t9", number);
TermQuery termQuery = new TermQuery(term);
termQuery.setBoost(2.0f);
WildcardQuery plus2 = new WildcardQuery(
 new Term("t9", number + "??"));
query.add(termQuery, false, false);
query.add(plus2, false, false);

The search results are sorted first by score, then by length, and finally alphabeti-
cally within words of the same length:

Hits hits = searcher.search(query,
 new Sort(new SortField[] {SortField.FIELD_SCORE,
 new SortField("length",
 SortField.INT),
 new SortField("word")}));

Search results are timed and cached. The status bar displays the time the search
took (often under 30ms). The cache allows the user to scroll through words.

Just a prototype
This desktop cell-phone prototype is a compellingly fast and accurate T9 lookup
implementation. However, the Lucene index used is over 2MB in size and is
unsuitable given current mobile-phone memory constraints. With a smaller set
of words and some indexing optimizations (using an unstored t9 field instead of
a keyword), the index could be dramatically reduced in size. With persistent, fast,
and cheap server connectivity from mobile devices, some word lookups could

11 “A unit of astronomical length based on the distance from Earth at which stellar parallax is 1 second
of arc; equivalent to 3.262 light years” (according to a Google define: secpar result from WordNet).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

300 CHAPTER 8
Tools and extensions
perhaps be performed on the server rather than the client. Searching Google is
already a common mobile device activity!

8.7 Highlighting query terms

Giving users of your search engine some context around hits from their searches
is friendly and, more important, useful. A prime example is Google search
results. Each hit, as shown in figure 1.1, includes up to three lines of the match-
ing document highlighting the terms of the query. Often a brief glimpse of the
surrounding context of the search terms is enough to know if that result is worth
investigating further.

 Thanks to Mark Harwood’s contribution, the Sandbox includes infrastructure
to highlight text based on a Lucene query. Figure 8.17 is an example of using
Highlighter on a sample of text based on a term query for ipsum.

 The Highlighter code has recently evolved substantially into a sophisticated
and flexible utility. The Highlighter includes three main pieces: Fragmenter,
Scorer, and Formatter. These correspond to Java interfaces by the same names,
and each has a built-in implementation for ease of use. The simplest example of
Highlighter returns the best fragment, surrounding each matching term with
HTML tags:

String text = "The quick brown fox jumps over the lazy dog";

TermQuery query = new TermQuery(new Term("field", "fox"));
Scorer scorer = new QueryScorer(query);
Highlighter highlighter = new Highlighter(scorer);

TokenStream tokenStream =
 new SimpleAnalyzer().tokenStream("field",
 new StringReader(text));

System.out.println(highlighter.getBestFragment(tokenStream, text));

Figure 8.17
Highlighting query terms
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Highlighting query terms 301
The previous code produces this output:

The quick brown fox jumps over the lazy dog

Highlighter requires that you provide not only a scorer and the text to highlight,
but also a TokenStream. Analyzers produce TokenStreams (see chapter 4). To suc-
cessfully highlight terms, the terms in the Query need to match Tokens emitted
from the TokenStream. The same text should be used to generate the TokenStream
as is used for the original text to highlight. Each Token emitted from a Token-
Stream contains positional information, indicating where in the original text to
begin and end highlighting.

 The Highlighter breaks the original text into fragments, using a Fragmenter.
The built-in SimpleFragmenter splits the original text into same-size fragments
with the default size of 100 characters. The size of fragments is controllable, as
you’ll see in listing 8.6.

 QueryScorer is the built-in Scorer. The Scorer’s job is primarily to rank frag-
ments. QueryScorer uses the terms from the query; it extracts them from primitive
term, phrase, and Boolean queries and weights them based on their correspond-
ing boost factor. A query must be rewritten in its most primitive form for Query-
Scorer to be happy. For example, wildcard, fuzzy, prefix, and range queries
rewrite themselves to a BooleanQuery of all the matching terms. Call Query.
rewrite(IndexReader) to rewrite a query prior to passing the Query to Query-
Scorer (unless, as in this example, you’re sure the query is a primitive one).

 Finally, the Formatter decorates term text. The built-in SimpleHTMLFormatter,
unless specified otherwise, uses begin and end HTML bold tags to surround the
highlighted term text. Highlighter uses both the SimpleHTMLFormatter and Simple-
Fragmenter by default. For each term it’s highlighting, the Formatter is handed a
token score. This score is, when using QueryScorer, is the boost factor of the query
clause of that term. This token score could be used to affect the decoration based
on the importance of the term. A custom Formatter would need to be implemented
to take advantage of this feature, but this is beyond the scope of this section.

8.7.1 Highlighting with CSS

Using tags to surround text that will be rendered by browsers is a reasonable
default. Fancier styling should be done with cascading style sheets (CSS) instead.
Our next example uses custom begin and end tags to wrap highlighted terms
with a using the custom CSS class highlight. Using CSS attributes, the
color and formatting of highlighted terms is decoupled from highlighting,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

302 CHAPTER 8
Tools and extensions
allowing much more control for the web designers who are tasked with beautify-
ing our search results page.

 Listing 8.7 demonstrates the use of custom a custom Fragmenter, setting the
fragment size to 50, and a custom Formatter to style highlights with CSS. In our
first example, only the best fragment was returned, but Highlighter shines in
returning multiple fragments. HighlightIt, in listing 8.7, uses the Highlighter
method to concatenate the best fragments with an ellipsis (…) separator; how-
ever you could also have a String[] returned by not passing in a separator, so
that your code could deal with each fragment individually.

public class HighlightIt {
 private static final String text =
 "Contrary to popular belief, Lorem Ipsum is" +
 " not simply random text. It has roots in a piece of" +
 " classical Latin literature from 45 BC, making it over" +
 " 2000 years old. Richard McClintock, a Latin professor" +
 " at Hampden-Sydney College in Virginia, looked up one" +
 " of the more obscure Latin words, consectetur, from" +
 " a Lorem Ipsum passage, and going through the cites" +
 " of the word in classical literature, discovered the" +
 " undoubtable source. Lorem Ipsum comes from sections" +
 " 1.10.32 and 1.10.33 of \"de Finibus Bonorum et" +
 " Malorum\" (The Extremes of Good and Evil) by Cicero," +
 " written in 45 BC. This book is a treatise on the" +
 " theory of ethics, very popular during the" +
 " Renaissance. The first line of Lorem Ipsum, \"Lorem" +
 " ipsum dolor sit amet..\", comes from a line in" +
 " section 1.10.32."; // from http://www.lipsum.com/

 public static void main(String[] args) throws IOException {
 String filename = args[0];

 if (filename == null) {
 System.err.println("Usage: HighlightIt <filename>");
 System.exit(-1);
 }

 TermQuery query = new TermQuery(new Term("f", "ipsum"));
 QueryScorer scorer = new QueryScorer(query);
 SimpleHTMLFormatter formatter =
 new SimpleHTMLFormatter("",
 "");
 Highlighter highlighter = new Highlighter(formatter, scorer);
 Fragmenter fragmenter = new SimpleFragmenter(50);
 highlighter.setTextFragmenter(fragmenter);

Listing 8.7 Highlighting terms using cascading style sheets

Customize
surrounding tags

 b

Reduce default
fragment size

 c
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Highlighting query terms 303
 TokenStream tokenStream = new StandardAnalyzer()
 .tokenStream("f", new StringReader(text));

 String result =
 highlighter.getBestFragments(tokenStream, text, 5, "...");

 FileWriter writer = new FileWriter(filename);
 writer.write("<html>");
 writer.write("<style>\n" +
 ".highlight {\n" +
 " background: yellow;\n" +
 "}\n" +
 "</style>");
 writer.write("<body>");
 writer.write(result);
 writer.write("</body></html>");
 writer.close();
 }
}

We customize the surrounding tags for each highlighted term.
This code reduces the default fragment size from 100 to 50 characters.
Here we tokenize the original text, using StandardAnalyzer.
We highlight the best five fragments, separating them with an ellipsis (…).
Finally we write the highlighted HTML to a file, as shown in figure 8.15.

In neither of our examples did we perform a search and highlight actual hits. The
text to highlight was hard-coded. This brings up an important issue when dealing
with the Highlighter: where to get the text to highlight. This is addressed in the
next section.

8.7.2 Highlighting Hits

Whether to store the original field text in the index is up to you (see section 2.2
for field indexing options). If the original text isn’t stored in the index (generally
for size considerations), it will be up to you to retrieve the text to be highlighted
from its original source. If the original text is stored with the field, it can be
retrieved directly from the Document obtained from Hits, as shown in the follow-
ing piece of code:

IndexSearcher searcher = new IndexSearcher(directory);

TermQuery query = new TermQuery(new Term("title", "action"));
Hits hits = searcher.search(query);

Tokenize text d

Highlight best 5
fragments

 e

Write
highlighted
HTML

 f

 b
 c
 d
 e
 f
Licensed to Jason Ruesch <krhonos713@hotmail.com>

304 CHAPTER 8
Tools and extensions
QueryScorer scorer = new QueryScorer(query);
Highlighter highlighter = new Highlighter(scorer);

for (int i = 0; i < hits.length(); i++) {
 String title = hits.doc(i).get("title");

 TokenStream stream =
 new SimpleAnalyzer().tokenStream("title",
 new StringReader(title));
 String fragment =
 highlighter.getBestFragment(stream, title);

 System.out.println(fragment);
}

With our sample book index, the output is

JUnit in Action
Lucene in Action
Tapestry in Action

Notice that it was still our responsibility to tokenize the text. This is duplicated
effort, since the original text was tokenized during indexing. However, during
indexing, the positional information is discarded (that is, the character position
of each term in the original text, but the term position offsets are stored in the
index). Because of the computational needs of highlighting, it should only be
used for the hits displayed to the user.

8.8 Chaining filters

Using a search filter, as we’ve discussed in section 5.5, is a powerful mechanism for
selectively narrowing the document space to be searched by a query. The Sandbox
contains an interesting meta-filter in the misc project, contributed by Kelvin Tan,
which chains other filters together and performs AND, OR, XOR, and ANDNOT bit
operations between them. ChainedFilter, like the built-in CachingWrapperFilter,
isn’t a concrete filter; it combines a list of filters and performs a desired bit-wise
operation for each successive filter, allowing for sophisticated combinations.

 It’s slightly involved to demonstrate ChainedFilter because it requires a diverse
enough dataset to showcase how the various scenarios work. We’ve set up an index
with 500 documents including a key field with values 1 through 500; a date field
with successive days starting from January 1, 2003; and an owner field with the first
half of the documents owned by bob and the second half owned by sue:

public class ChainedFilterTest extends TestCase {
 public static final int MAX = 500;
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Chaining filters 305
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private Query query;
 private DateFilter dateFilter;
 private QueryFilter bobFilter;
 private QueryFilter sueFilter;

 public void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(directory, new WhitespaceAnalyzer(), true);

 Calendar cal = Calendar.getInstance();
 cal.setTimeInMillis(1041397200000L); // 2003 January 01

 for (int i = 0; i < MAX; i++) {
 Document doc = new Document();
 doc.add(Field.Keyword("key", "" + (i + 1)));
 doc.add(
 Field.Keyword("owner", (i < MAX / 2) ? "bob" : "sue"));
 doc.add(Field.Keyword("date", cal.getTime()));
 writer.addDocument(doc);

 cal.add(Calendar.DATE, 1);
 }

 writer.close();

 searcher = new IndexSearcher(directory);

 // query for everything to make life easier
 BooleanQuery bq = new BooleanQuery();
 bq.add(new TermQuery(new Term("owner", "bob")), false, false);
 bq.add(new TermQuery(new Term("owner", "sue")),false, false);
 query = bq;

 // date filter matches everything too
 Date pastTheEnd = parseDate("2099 Jan 1");
 dateFilter = DateFilter.Before("date", pastTheEnd);

 bobFilter = new QueryFilter(
 new TermQuery(new Term("owner", "bob")));
 sueFilter = new QueryFilter(
 new TermQuery(new Term("owner", "sue")));
 }

 // ...
}

In addition to the test index, setUp defines an all-encompassing query and some
filters for our examples. The query searches for documents owned by either bob
or sue; used without a filter, it will match all 500 documents. An all-encompassing
Licensed to Jason Ruesch <krhonos713@hotmail.com>

306 CHAPTER 8
Tools and extensions
DateFilter is constructed, as well as two QueryFilters, one to filter on owner bob
and the other for sue.

 Using a single filter nested in a ChainedFilter has no effect beyond using the
filter without ChainedFilter, as shown here with two of the filters:

public void testSingleFilter() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[] {dateFilter});
 Hits hits = searcher.search(query, chain);
 assertEquals(MAX, hits.length());

 chain = new ChainedFilter(new Filter[] {bobFilter});
 hits = searcher.search(query, chain);
 assertEquals(MAX / 2, hits.length());
}

The real power of ChainedFilter comes when we chain multiple filters together.
The default operation is OR, combining the filtered space as shown when filter-
ing on bob or sue:

public void testOR() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[] {sueFilter, bobFilter});

 Hits hits = searcher.search(query, chain);
 assertEquals("OR matches all", MAX, hits.length());
}

Rather than increase the document space, AND can be used to narrow the space:

public void testAND() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[] {dateFilter, bobFilter}, ChainedFilter.AND);

 Hits hits = searcher.search(query, chain);
 assertEquals("AND matches just bob", MAX / 2, hits.length());
 assertEquals("bob", hits.doc(0).get("owner"));
}

The testAND test case shows that the dateFilter is AND’d with the bobFilter,
effectively restricting the search space to documents owned by bob since the
dateFilter is all encompassing. In other words, the intersection of the provided
filters is the document search space for the query.

Filter bit sets can be XOR’d (exclusively OR’d, meaning one or the other,
but not both):

public void testXOR() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[]{dateFilter, bobFilter}, ChainedFilter.XOR);
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Storing an index in Berkeley DB 307
 Hits hits = searcher.search(query, chain);
 assertEquals("XOR matches sue", MAX / 2, hits.length());
 assertEquals("sue", hits.doc(0).get("owner"));
}

The dateFilter XOR’d with bobFilter effectively filters for owner sue in our test
data. And finally, the ANDNOT operation allows only documents that match the
first filter but not the second filter to pass through:

public void testANDNOT() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[]{dateFilter, sueFilter},
 new int[] {ChainedFilter.AND, ChainedFilter.ANDNOT});

 Hits hits = searcher.search(query, chain);
 assertEquals("ANDNOT matches just bob",
 MAX / 2, hits.length());
 assertEquals("bob", hits.doc(0).get("owner"));
}

In testANDNOT, given our test data, all documents in the date range except those
owned by sue are available for searching, which narrows it down to only docu-
ments owned by bob.

 Depending on your needs, the same effect can be obtained by combining query
clauses into a BooleanQuery or using the new FilteredQuery (see section 6.4.1,
page 212). Keep in mind the performance caveats to using filters; and, if you’re
reusing filters without changing the index, be sure you’re using a caching filter.
Chained-Filter doesn’t cache, but wrapping it in a CachingWrappingFilter will
take care of that aspect.

8.9 Storing an index in Berkeley DB

The low-key Chandler project (http://www.osafoundation.org) is an ongoing effort
to build an open-source Personal Information Manager. Chandler aims to man-
age diverse types of information such as email, instant messages, appointments,
contacts, tasks, notes, web pages, blogs, bookmarks, photos, and much more. It’s
an extensible platform, not just an application. As you suspected, search is a cru-
cial component to the Chandler infrastructure.

 Chandler’s underlying repository uses Sleepycat’s Berkeley DB in a vastly dif-
ferent way than a traditional relational database, inspired by RDF and associative
databases. The Chandler codebase uses Python primarily, with hooks to native
code where necessary. We’re going to jump right to how the Chandler developers
use Lucene; refer to the Chandler site for more details on this fascinating project.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

308 CHAPTER 8
Tools and extensions
Lucene is compiled to the native platform using GCJ and is accessed from Python
through SWIG. Lupy (the Python port of Lucene) was considered, but for speed a
more native approach was deemed more appropriate.

 Andi Vajda, one of Chandler’s key developers, created a Lucene directory
implementation that uses Berkeley DB as the underlying storage mechanism. An
interesting side-effect of having a Lucene index in a database is the transactional
support it provides. Andi donated his implementation to the Lucene project, and
it’s maintained in the Db contributions area of the Sandbox. The Chandler project
has also open-sourced its PyLucene code, which is discussed in section 9.6.

8.9.1 Coding to DbDirectory

DbDirectory is more involved to use than the built-in RAMDirectory and FSDirec-
tory. It requires constructing and managing two Berkeley DB Java API objects,
DbEnv and Db. Listing 8.8 shows DbDirectory being used for indexing.

public class BerkeleyDbIndexer {
 public static void main(String[] args)
 throws IOException, DbException {
 if (args.length != 1) {
 System.err.println("Usage: BerkeleyDbIndexer <index dir>");
 System.exit(-1);
 }
 String indexDir = args[0];

 DbEnv env = new DbEnv(0);
 Db index = new Db(env, 0);
 Db blocks = new Db(env, 0);
 File dbHome = new File(indexDir);
 int flags = Db.DB_CREATE;

 if (dbHome.exists()) {
 File[] files = dbHome.listFiles();

 for (int i = 0; i < files.length; i++)
 if (files[i].getName().startsWith("__"))
 files[i].delete();
 dbHome.delete();
 }

 dbHome.mkdir();

 env.open(indexDir, Db.DB_INIT_MPOOL | flags, 0);
 index.open(null, "__index__", null, Db.DB_BTREE, flags, 0);
 blocks.open(null, "__blocks__", null, Db.DB_BTREE, flags, 0);

Listing 8.8 Indexing with DbDirectory
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Building the Sandbox 309
 DbDirectory directory = new DbDirectory(null, index, blocks, 0);
 IndexWriter writer = new IndexWriter(directory,
 new StandardAnalyzer(),
 true);

 Document doc = new Document();
 doc.add(Field.Text("contents", "The quick brown fox..."));
 writer.addDocument(doc);

 writer.optimize();
 writer.close();

 index.close(0);
 blocks.close(0);
 env.close(0);

 System.out.println("Indexing Complete");
 }
}

Once you have an instance of DbDirectory, using it with Lucene is no different
than using the built-in Directory implementations. Searching with DbDirectory
uses the same mechanism, but you use the flags value of 0 to access an already-
created index.

8.9.2 Installing DbDirectory

Erik had a hard time getting DbDirectory working, primarily because of issues
with building and installing Berkeley DB 4.2.52 on Mac OS X. After many emails
back and forth with Andi, the problems were resolved, and the index (and unshown
searching) example worked.

 Follow the instructions for obtaining and installing Berkeley DB. Be sure to
configure the Berkeley DB build with Java support enabled (./configure --
enable-java). You need Berkeley DB’s db.jar as well as the DbDirectory (and
friends) code from the Sandbox in your classpath. At least on Mac OS X, setting
the environment variable DYLD_LIBRARY_PATH to /usr/local/BerkeleyDB.4.2/lib was
also required.

8.10 Building the Sandbox

The Sandbox repository has historically been a “batteries not included” area.
Work is in progress to improve the visibility and ease of using the Sandbox com-
ponents, and this area may change from the time of this writing until you read
Licensed to Jason Ruesch <krhonos713@hotmail.com>

310 CHAPTER 8
Tools and extensions
this book. Initially, each contribution to the Sandbox had its own Ant build file
and wasn’t integrated into a common build, but this situation has improved; now,
most of the Sandbox pieces are incorporated into a common build infrastructure.

 Unless more current documentation online says otherwise, we recommend
that you obtain the Sandbox components directly from Jakarta’s anonymous CVS
access and either build the JAR files and incorporate the binaries into your
project or copy the desired source code into your project and build it directly
into your own binaries.

8.10.1 Check it out

Using a CVS client, follow the instructions provided at the Jakarta site: http://
jakarta.apache.org/site/cvsindex.html. Specifically, this involves executing the
following commands from the command line:

% cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
password: anoncvs

% cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic checkout
 jakarta-lucene-sandbox

The password is anoncvs. This is read-only access to the repository. In your cur-
rent directory, you’ll now have a subdirectory named jakarta-lucene-sandbox.
Under that directory is a contributions directory where all the goodies discussed
here, and more, reside.

8.10.2 Ant in the Sandbox

Next, let’s build the components. You’ll need Ant 1.6.x in order to run the Sand-
box build files. At the root of the contributions directory is a build.xml file. From
the command line, with the current directory jakarta-lucene-sandbox/contribu-
tions, execute ant. Most of the components will build, test, and create a distribut-
able JAR file in the dist subdirectory.

 Some components, such as javascript, aren’t currently integrated into this
build process, so you need to copy the necessary files into your project. Some
outdated contributions are still there as well (these are the ones we didn’t men-
tion in this chapter), and additional contributions will probably arrive after we’ve
written this.

 Each contribution subdirectory, such as analyzers and ant, has its own
build.xml file. To build a single component, set your current working directory to
the desired component’s directory and execute ant. This is still a fairly crude way
of getting your hands on these add-ons to Lucene, but it’s useful to have direct
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 311
access to the source. You may want to use the Sandbox for ideas and inspiration,
not necessarily for the exact code.

8.11 Summary

Don’t reinvent the wheel. Someone has probably encountered the same situation
you’re struggling with—you need language-specific analysis, or you want to build
an index during an Ant build process, or you want query terms highlighted in
search results. The Sandbox and the other resources listed on the Lucene web
site should be your first stops.

 If you end up rolling up your sleeves and creating something new and generally
useful, please consider donating it to the Sandbox or making it available to the
Lucene community. We’re all more than grateful for Doug Cutting’s generosity for
open-sourcing Lucene itself. By also contributing, you benefit from a large num-
ber of skilled developers who can help review, debug, and maintain it; and, most
important, you can rest easy knowing you have made the world a better place!
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene ports
This chapter covers
■ Using Lucene ports to other programming

languages
■ Comparing ports’ APIs, features, and

performance
312

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Ports’ relation to Lucene 313
Over the past few years, Lucene’s popularity has grown dramatically. Today,
Lucene is the de facto standard open-source Java IR library. Although surveys
have shown that Java is currently the most widespread programming language,
not everyone uses Java. Luckily, a number of Lucene ports are available in differ-
ent languages for those whose language of choice is not Java.

 In this chapter, we’ll give you an overview of all the Lucene ports currently
available. We’ll provide brief examples of the ports’ use, but keep in mind that
each port is an independent project with its own mailing lists, documentation,
tutorials, user, and developer community that will be able to provide more
detailed information.

9.1 Ports’ relation to Lucene

Table 9.1 shows a summary of the most important aspects of each port. As you
can see, the ports lag behind Lucene. Don’t be discouraged by that, though; all
the Lucene port projects are actively developed.

Each of the featured ports is currently an independent project. This means that
each port has its own web site, mailing lists, and everything else that typically goes
along with open-source projects. Each port also has its own group of founders
and developers.

 Although each port tries to remain in sync with the latest Lucene version, they
all lag behind it a bit. Furthermore, most of the ports are relatively young, and
from what we could gather, there are no developer community overlaps. Each
port takes some and omits some of the concepts from Lucene, but because
Lucene was well designed, they all mimic its architecture. There is also little com-
munication between the ports’ developers and Lucene’s developers, although
we’re all aware of each project’s existence. This may change with time, especially

Table 9.1 The summary of all existing Lucene ports

CLucene dotLucene Plucene Lupy PyLucene

Port language C++ C# Perl Python GCJ + SWIG

Current version 0.8.11 1.4 1.19 0.2.1 0.9.2

Java version 1.2 1.4-final 1.3 1.2 (partial) 1.4 (partial)

Compatible index Yes (1.2) Yes (1.4) Yes (1.3) Yes (1.2) Yes
Licensed to Jason Ruesch <krhonos713@hotmail.com>

314 CHAPTER 9
Lucene ports
since the authors of this book would like to see all ports gathered around Lucene
in order to ensure parallel development, a stronger community, minimal API
changes, a compatible index format, and so on. With this said, let’s look at each
port, starting with CLucene.

9.2 CLucene

CLucene is Ben van Klinken’s open-source port of Apache Jakarta Lucene to
C++. It’s released under the LGPL license and hosted at http://sourceforge.net/
projects/clucene/. Ben is an Australian pursuing a Masters Degree in International
Relations and Asian Politics. Although his studies aren’t in a technology-related
field, he has strong interest in Information Retrieval. Ben was kind enough to
provide this overview of CLucene.

 The current version of CLucene is 0.8.11; it’s based on Lucene version 1.2.
Due to Unicode problems (outlined later), there are some compatibility issues on
Linux between non-Unicode indexes and Unicode indexes. Linux-based CLucene
will read Unicode indexes but may produce strange results. The version compiled
for the Microsoft Windows platform has no problems with Unicode support.

 The distribution package of CLucene includes many of the same components
as Lucene, such as tests and demo examples. It also contains wrappers that allow
CLucene to be used with other programming languages. Currently there are
wrappers for PHP, .NET (read-only), and a Dynamic Link Library (DLL) that can
be shared between different programs, and separately developed wrappers for
Python and Perl.

9.2.1 Supported platforms

CLucene was initially developed in Microsoft Visual Studio, but now it also com-
piles in GCC, MinGW32, and (reportedly) the Borland C++ compiler (although
no build scripts are currently being distributed). In addition to the MS Windows
platform, CLucene has also been successfully built on Red Hat 9, Mac OS X, and
Debian. The CLucene team is making use of SourceForge’s multiplatform com-
pile farm to ensure that CLucene compiles and runs on as many platforms as pos-
sible. The activity on the CLucene developers’ mailing lists indicates that support
for AMD64 architecture and FreeBSD is being added.

9.2.2 API compatibility

The CLucene API is similar to Lucene’s. This means that code written in Java can
be converted to C++ fairly easily. The drawback is that CLucene doesn’t follow
Licensed to Jason Ruesch <krhonos713@hotmail.com>

CLucene 315
the generally accepted C++ coding standards. However, due to the number of
classes that would have to redesigned, CLucene continues to follow a “Javaesque”
coding standard. This approach also allows much of the code to be converted
using macros and scripts. The CLucene wrappers for other languages, which are
included in the distribution, all have different APIs.

 Listing 9.1 shows a command-line program that illustrates the indexing and
searching API and its use. This program first indexes several documents with a sin-
gle contents field. Following that, it runs a few searches against the generated
index and prints out the search results for each query.

int main(int argc, char** argv){

try {
 SimpleAnalyzer* analyzer = new SimpleAnalyzer();
 IndexWriter writer(_T("testIndex"), *analyzer, true);

 wchar_t* docs[] = {
 _T("a b c d e"),
 _T("a b c d e a b c d e"),
 _T("a b c d e f g h i j"),
 _T("a c e"),
 _T("e c a"),
 _T("a c e a c e"),
 _T("a c e a b c")
 };

 for (int j = 0; j < 7; j++) {
 Document* d = new Document();
 Field& f = Field::Text(_T("contents"), docs[j]);
 d->add(f);

 writer.addDocument(*d);
 // no need to delete fields - document takes ownership
 delete d;
 }
 writer.close();

 IndexSearcher searcher(_T("testIndex"));
 wchar_t* queries[] = {
 _T("a b"),
 _T("\"a b\""),
 _T("\"a b c\""),
 _T("a c"),
 _T("\"a c\""),
 _T("\"a c e\""),
 };

Listing 9.1 Using CLucene’s IndexWriter and IndexSearcher API
Licensed to Jason Ruesch <krhonos713@hotmail.com>

316 CHAPTER 9
Lucene ports
 Hits* hits = NULL;
 QueryParser parser(_T("contents"), *analyzer);

 parser.PhraseSlop = 4;
 for (int j = 0; j < 6; j++) {

 Query* query = &parser.Parse(queries[j]);
 const wchar_t* qryInfo = query->toString(_T("contents"));
 _cout << _T("Query: ") << qryInfo << endl;
 delete qryInfo;

 Hits* hits = &searcher.search(*query);
 _cout << hits->Length() << _T(" total results") << endl;

 for (int i=0; i<hits->Length() && i<10; i++) {
 Document* d = &hits->doc(i);
 cout << i << _T(" ") << hits->score(i) <<
 _T(" ") << d->get(_T("contents")) << endl;
 }
 delete hits;
 delete query;
}

searcher.close();
if (analyzer)
 delete analyzer;
} catch (THROW_TYPE e) {
 _cout << _T(" caught a exception: ") <<
 e.what() << _T("\n");
} catch (...){
 _cout << _T(" caught an unknown exception\n");
}

Many applications have to deal with characters outside the ASCII range. Let’s
look at some Unicode-related issues we mentioned earlier.

9.2.3 Unicode support

CLucene was originally written to be as fast and lightweight as possible. In the
interest of speed, the decision was made not to incorporate any external libraries
for string handling and reference counting. However, there are some drawbacks
to this. Linux suffers from a lack of good Unicode support, and since CLucene
doesn’t use external libraries, Linux builds had to be built without Unicode. This
led to CLucene using the _UNICODE pre-processor directive: When it’s specified,
the Unicode characters are used; otherwise, non-Unicode (narrow) characters are
used. However, support for Unicode is included in CLucene and can be enabled
Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://www.awasu.com/
http://www.awasu.com/
http://www.awasu.com/

dotLucene 317
at compile-time. Future version may also solve this problem by optionally includ-
ing a Unicode library.

9.2.4 Performance

According to a couple of reports captured in the archives of the Lucene Developers
mailing list, CLucene indexes documents faster than Lucene. We haven’t done any
benchmarks ourselves because doing so would require going back to version 1.2
of Lucene (not something a new Lucene user would do).

9.2.5 Users

Although the CLucene port has been around for a while and has an active user
mailing list, we haven’t been able to locate many actual CLucene users to list here.
This could be due to the fact that the CLucene development team is small and
has a hard time keeping up with features being added to Lucene. We did find out
about Awasu, a personal knowledge–management tool that uses CLucene under
the covers (http://www.awasu.com/).

9.3 dotLucene

When we first wrote this chapter, we discussed a .NET port of Lucene called
Lucene.Net. Unfortunately, the people behind Lucene.Net decided to withdraw
their port and its source code from the SourgeForge site, where the project was
hosted. However, Lucene.Net was released under the Apache Software License
(ASL), which made it possible for a new group of developers to take over the
project. This new incarnation of the .NET port is dotLucene, and you can find it
at http://www.sourceforge.net/projects/dotlucene/. The distribution package of
dotLucene consists of the same components as the distribution package of
Lucene. It includes the source code, tests, and a few demo examples.

 In addition to dotLucene, there is another port of Lucene to the .NET plat-
form: NLucene, which is hosted at http://www.sourceforge.net/projects/nlucene/.
However, this port appears hopelessly out of date—the last version was released
in the summer of 2002—and so doesn’t merit full coverage.

9.3.1 API compatibility

Although it’s written in C#, dotLucene exposes an API that is nearly identical to
that of Lucene. Consequently, code written for Lucene can be ported to C# with
minimal effort. This compatibility also allows .NET developers to use documen-
tation for the Java version, such as this book.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

http://www.sourceforge.net/projects/dotlucene/

318 CHAPTER 9
Lucene ports
 The difference is limited to the Java and C# naming styles. Whereas Java’s
method names begin with lowercase letters, the .NET version uses the C# nam-
ing style in which method names typically begin with uppercase letters.

9.3.2 Index compatibility

dotLucene is compatible with Lucene at the index level. That is to say, an index
created by Lucene can be read by dotLucene and vice versa. Of course, as Lucene
evolves, indexes between versions of Lucene itself may not be portable, so this
compatibility is currently limited to Lucene version 1.4.

9.3.3 Performance

The developers of dotLucene don’t have any performance numbers at this time,
and they’re focused on adding features to their port to ensure it stays as close to
Lucene as possible. However, it would be safe to assume that dotLucene’s perfor-
mance is similar to that of its precursor; according to Lucene.Net’s author, its
performance was comparable to that of Lucene.

9.3.4 Users

In the course of our research of Lucene.Net, we found several interesting users of
that Lucene port. The most notable user of Lucene.Net is Lookout Software (http://
www.lookoutsoft.com/Lookout/), which was recently acquired by Microsoft Corpo-
ration. It’s the creator of Lookout, a popular Microsoft Outlook add-on that pro-
vides search functionality superior to that of Outlook’s built-in search feature.

 Another interesting user of Lucene.Net is Beagle (http://www.gnome.org/
projects/beagle/), a GNOME component for indexing and searching of all kinds of
files, including pictures. Beagle is still in the very early phases of development.

 Because the dotLucene project is so new, we didn’t look for users of this new
port. However, since the last version of Lucene.Net was used to start the dotLucene
project, both Lookout Software and Beagle are effectively using dotLucene. Fur-
thermore, we’re certain that with time, all users of the Lucene.Net port will migrate
to dotLucene.

9.4 Plucene

Plucene is a Perl port of Lucene; you can find it on CPAN (http://search.cpan.org/
dist/Plucene/). Version 1.19 of Plucene was released in July 2004, and it’s a straight
port of version 1.3 of Lucene. Most of the work was done by Simon Cozens, and
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Plucene 319
although his involvement with Plucene development has lessened, he remains
involved and active on the Plucene mailing list.

9.4.1 API compatibility

Being a direct port of Lucene, Plucene preserves the API to a large extent. The only
obvious difference is in the code-naming style, which follows the standards for the
naming and structure of Perl modules, classes, method, and such. In listing 9.2,
you can see an example of IndexWriter and IndexSearcher usage in Plucene.

my $writer = Plucene::Index::Writer->new("/tmp/index",
Plucene::Plugin::Analyzer::PorterAnalyzer->new(), 1);
$writer->set_mergefactor(100);
while (($key, $value) = each (%hash)) {
 $doc = Plucene::Document->new;
 $doc->add(Plucene::Document::Field->Keyword(id => $key));
 $doc->add(Plucene::Document::Field->UnStored('text' => $value));
 $writer->add_document($doc);
};
$writer->optimize;
undef $writer;
my $parser = Plucene::QueryParser->new({
 analyzer => Plucene::Plugin::Analyzer::PorterAnalyzer->new(),
 default => "text"
});
my $queryStr = "+mango +ginger";
my $query = $parser->parse($queryStr);
my $searcher = Plucene::Search::IndexSearcher->new("/tmp/index");
my $hc = Plucene::Search::HitCollector->new(collect => sub {
 my ($self, $doc, $score)= @_;
 push @docs, $searcher->doc($doc);
});
$searcher->search_hc($query, $hc);

As you can tell from the listing, if you’re familiar with Perl, you’ll be able to trans-
late between the Java and Perl versions with ease.

 Although the Plucene API resembles that of Lucene, there are some internal
implementation differences between the two codebases. One difference is that
Lucene uses method overloading, whereas Plucene uses different method names
in most cases. The other difference, according to Plucene’s developers, is that
Java uses 64-bit long integers, but most Perl versions use 32 bits.

Listing 9.2 Using Plucene’s IndexWriter and IndexSearcher API
Licensed to Jason Ruesch <krhonos713@hotmail.com>

320 CHAPTER 9
Lucene ports
9.4.2 Index compatibility

According to Plucene’s author, indexes created by Lucene 1.3 and Plucene 1.19 are
compatible. A Java application that uses Lucene 1.3 will be able to read and digest
an index created by Plucene 1.19 and vice versa. As is the case for other ports with
compatible indexes, indexes between versions of Lucene itself may not be portable
as Lucene evolves, so this compatibility is restricted to Lucene version 1.3.

9.4.3 Performance

Version 1.19 of Plucene is significantly slower than the Java version. One Plucene
developer attributed this to differences in advantages and weaknesses between
the implementation languages. Because Plucene is a fairly direct port, many of
Java strengths hit Perl’s weak spots. However, according to the same source, fixes
for performance problems are in the works. Some recent activity on Plucene’s
mailing lists also suggests that developers are addressing performance issues.

9.4.4 Users

According to Plucene consultants, Plucene is used by Gizmodo (http://www.
gizmodo.com/), a site that reviews cutting-edge consumer electronic devices.
It’s also used by Twingle (http://www.twingle.com), a web-mail site run by Kasei,
the company that sponsored the development of Plucene. Plucene has also
been integrated into Movable Type, a popular blogging software.

9.5 Lupy

Lupy is a pure Python port of Lucene 1.2. The main developers of Lupy are Amir
Bakhtiar and Allen Short. Some core Lucene functionality is missing from Lupy,
such as QueryParser, some of the analyzers, index merging, locking, and a few
other small items. Although Lupy is a port of a rather old Lucene version, its
developers are busy adding features that should bring it closer to Lucene 1.4. The
current version of Lupy is 0.2.1; you can find it at http://www.divmod.org/Home/
Projects/Lupy/.

9.5.1 API compatibility

Python syntax aside, Lupy’s API resembles that of Lucene. In listing 9.3, which
shows how to index a Document with Lupy, you see familiar classes and methods.
However, note that we can create IndexWriter without specifying the analyzer—
that is something we can’t do in Lucene.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lupy 321
from lupy.index.indexwriter import IndexWriter
from lupy import document

open index for writing
indexer = IndexWriter('/tmp/index', True)

create document
d = document.Document()

add fields to document
f = document.Keyword('filename', fname)
d.add(f)
f = document.Text('title', title)
d.add(f)

Pass False as the 3rd arg to ensure that
the actual text of s is not stored in the index
f = document.Text('text', s, False)
d.add(f)

add document to index, optimize and close index
indexer.addDocument(d)
indexer.optimize()
indexer.close

Listing 9.4 shows how we can use Lupy to search the index we created with the
code from listing 9.3. After opening the index with IndexSearcher, we create a
Term and then a TermQuery in the same fashion we would with Lucene. After exe-
cuting the query, we loop through all hits and print out the results.

from lupy.index.term import Term
from lupy.search.indexsearcher import IndexSearcher
from lupy.search.term import TermQuery

open index for searching
searcher = IndexSearcher('/tmp/index')

look for the word 'mango' in the 'text' field
t = Term('text', 'mango')
q = TermQuery(t)

execute query and get hits
hits = searcher.search(q)

Listing 9.3 Indexing a file with Lupy, and demonstrating Lupy’s indexing API

Listing 9.4 Searching an index with Lupy, and demonstrating Lupy’s searching API
Licensed to Jason Ruesch <krhonos713@hotmail.com>

322 CHAPTER 9
Lucene ports
loop through hits and print them
for hit in hits:
 print 'Found in document %s (%s)' % (hit.get('filename'),
 hit.get('title'))

As you can see, the Lupy API feels only a little different from that of Lucene. That
is to be expected—Lupy’s developers are big Python fans. Regardless, the API is
simple and resembles Lucene’s API closely.

9.5.2 Index compatibility

As is the case with dotLucene and Plucene, an index created with Lupy is com-
patible with that of Lucene. Again, that compatibility is limited to a particular
version. In Lupy’s case, indexes are compatible with Lucene 1.2’s indexes.

9.5.3 Performance

Like Plucene, Lupy is a direct port of the original Lucene, which affects its per-
formance. There are no Python-specific tricks in Lupy to ensure optimal perfor-
mance of the Python port. However, we spoke to Lupy’s developers, and in
addition to adding newer Lucene features to Lupy, they will also be addressing
performance issues in upcoming releases.

9.5.4 Users

The primary user of Lupy is Divmod (http://www.divmod.com/). As you can tell
from the URL, this site is related to the site that hosts Lupy project.

9.6 PyLucene

PyLucene is the most recent Lucene port; it’s released under the MIT license and
led by Andi Vajda, who also contributed Berkeley DbDirectory (see section 8.9) to
the Lucene codebase. It began as an indexing and searching component of
Chandler (described briefly in section 8.9), an extensible open-source PIM, but it
was split into a separate project in June 2004. You can find PyLucene at http://
pylucene.osafoundation.org/.

 Technically speaking, PyLucene isn’t a true port. Instead, it uses GNU Java
Compiler (GCJ) and SWIG to export the Lucene API and make it available to a
Python interpreter. GCJ is distributed as part of the GCC toolbox, which can be
used to compile Java code into a native shared library. Such a shared library
exposes Java classes as C++ classes, which makes integration with Python simple.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

PyLucene 323
SWIG (http://www.swig.org) is a software development tool that connects pro-
grams written in C and C++ with a variety of high-level programming languages
such as Python, Perl, Ruby, and so on. PyLucene is essentially a combination of
the output of GCJ applied to Lucene’s source code and “SWIG gymnastics,” as
Andi Vajda put it.

9.6.1 API compatibility

Because PyLucene was originally a component of Chandler, its authors exposed
only those Lucene classes and methods that they needed. Consequently, not all
Lucene functionality is available in PyLucene. However, since PyLucene has
become a separate project, users have begun requesting more from it, so Andi
and his team are slowly exposing more of the Lucene API via SWIG. In time, they
intend to expose all functionality. Because adding Lucene’s latest features to
PyLucene is simple and quick, the PyLucene team believes PyLucene will always
be able to remain in sync with Lucene; this was one of the reasons its developers
embarked on it instead of trying to use Lupy.

 As far as its structure is concerned, the API is virtually the same, which makes
it easy for users of Lucene to learn how to use PyLucene. Another convenient
side effect is that all existing Lucene documentation can be used for program-
ming with PyLucene.

9.6.2 Index compatibility

Because of the nature of PyLucene (“compiler and SWIG gymnastics”), its indexes
are compatible with those of Lucene.

9.6.3 Performance

The aim of the PyLucene project isn’t to be the fastest Lucene port but to be the
closest port. Because of the GCJ and SWIG approach, this shouldn’t be difficult to
achieve, because it requires less effort than manually writing a port to another
programming language. Despite the fact that high performance isn’t the pri-
mary goal, PyLucene outperforms Lucene, although it doesn’t match the perfor-
mance of CLucene.

9.6.4 Users

Being a very recent Lucene port, PyLucene doesn’t have many public users yet. So
far, the only serious project we know of that uses PyLucene is Chandler (http://
www.osafoundation.org/).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

324 CHAPTER 9
Lucene ports
9.7 Summary

In this chapter, we discussed all currently existing Lucene ports known to us:
CLucene, dotLucene, Plucene, Lupy, and PyLucene. We looked at their APIs, sup-
ported features, Lucene compatibility, and performance as compared to Lucene,
as well as some of the users of each port. The future may bring additional Lucene
ports; the Lucene developers keep a list on the Lucene Wiki at http://wiki.apache.
org/jakarta-lucene/.

 By covering the Lucene ports, we have stepped outside the boundaries of core
Lucene. In the next chapter we’ll go even further by examining several interest-
ing Lucene case studies.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Case studies
This chapter covers
■ Using Lucene in the real world
■ Undertaking architectural design
■ Addressing language concerns
■ Handling configuration and threading concerns
325

Licensed to Jason Ruesch <krhonos713@hotmail.com>

326 CHAPTER 10
Case studies
A picture is worth a thousand words. Examples of Lucene truly “in action” are
invaluable. Lucene is the driving force behind many applications. There are
countless proprietary or top-secret uses of Lucene that we may never know about,
but there are also numerous applications that we can see in action online.
Lucene’s Wiki has a section titled PoweredBy, at http://wiki.apache.org/jakarta-
lucene/PoweredBy, which lists many sites and products that use Lucene.

 Lucene’s API is straightforward, almost trivial, to use. The magic happens when
Lucene is used cleverly. The case studies that follow are prime examples of very
intelligent uses of Lucene. Read between the lines of the implementation details
of each of them, and borrow the gems within. For example, Nutch delivers an
open-source, highly scalable, full-Internet search solution that should help keep
Google honest and on its toes. jGuru is focused on a single domain—Java—and
has tuned its search engine specifically for Java syntax. SearchBlox delivers a
product (limited free version available) based on Lucene, providing intranet
search solutions. LingPipe’s case study is intensely academic and mind-bogglingly
powerful for domain-focused linguistic analysis. Showing off the cleverness factor,
Michaels.com uses Lucene to index and search for colors. And finally, TheServer-
Side intelligently wraps Lucene with easily configurable infrastructure, enabling
you to easily find articles, reviews, and discussions about Java topics.

 If you’re new to Lucene, read these case studies at a high level and gloss over
any technical details or code listings; get a general feel for how Lucene is being
used in a diverse set of applications. If you’re an experienced Lucene developer
or you’ve digested the previous chapters in this book, you’ll enjoy the technical
details; perhaps some are worth borrowing directly for your applications.

 We’re enormously indebted to the contributors of these case studies who
took time out of their busy schedules to write what you see in the remainder of
this chapter.

10.1 Nutch: “The NPR of search engines”

Contributed by Michael Cafarella

Nutch is an open-source search engine that uses Lucene for searching the entire
web’s worth of documents, or in a customized form for an intranet or subset of
the Web. We want to build a search engine that is as good as anything else avail-
able: Nutch needs to process at least as many documents, search them at least as
fast, and be at least as reliable, as any search engine you’ve ever used.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Nutch: “The NPR of search engines” 327
 There is a lot of code in Nutch (the HTTP fetcher, the URL database, and so
on), but text searching is clearly at the center of any search engine. Much of the
code and effort put into Nutch exist for just two reasons: to help build a Lucene
index, and to help query that index.

 In fact, Nutch uses lots of Lucene indexes. The system is designed to scale to
process Web-scale document sets (somewhere between 1 and 10 billion docu-
ments). The set is so big that both indexing and querying must take place across
lots of machines simultaneously. Further, the system at query time needs to process
searches quickly, and it needs to survive if some machines crash or are destroyed.

 The Nutch query architecture is fairly simple, and the protocol can be described
in just a few steps:

1 An HTTP server receives the user’s request. There is some Nutch code
running there as a servlet, called the Query Handler. The Query Han-
dler is responsible for returning the result page HTML in response to the
user’s request.

2 The Query Handler does some light processing of the query and forwards
the search terms to a large set of Index Searcher machines. The Nutch
query system might seem much simpler than Lucene’s, but that’s largely
because search engine users have a strong idea of what kind of queries
they like to perform. Lucene’s system is very flexible and allows for many
different kinds of queries. The simple-looking Nutch query is converted
into a very specific Lucene one. This is discussed further later. Each Index
Searcher works in parallel and returns a ranked list of document IDs.

3 There are now many streams of search results that come back to the
Query Handler. The Query Handler collates the results, finding the best
ranking across all of them. If any Index Searcher fails to return results
after a second or two, it is ignored, and the result list is composed from
the successful repliers.

10.1.1 More in depth

The Query Handler does some very light processing of the query, such as throw-
ing away stop words such as the and of. It then performs a few operations so that
Nutch can work well at large scale. It contacts many Index Searchers simulta-
neously because the document set is too large to be searched by any single one.
In fact, for system-wide robustness, a single segment of the document set will be
copied to several different machines. For each segment in the set, the Query
Handler randomly contacts one of the Index Searchers that can search it. If an
Licensed to Jason Ruesch <krhonos713@hotmail.com>

328 CHAPTER 10
Case studies
Index Searcher cannot be contacted, the Query Handler marks it as unavailable
for future searches. (The Query Handler will check back every once in a while, in
case the machine comes available again.)

 One common search engine design question is whether to divide the overall
text index by document or by search term. Should a single Index Searcher be
responsible for, say, all occurrences of parrot? Or should it handle all possible
queries that hit the URL http://nutch.org?

 Nutch has decided on the latter, which definitely has some disadvantages.
Document-based segmentation means every search has to hit every segment;
with term-based segmentation, the Query Handler could simply forward to a sin-
gle Index Searcher and skip the integration step.1

 The biggest advantage of segmenting by document is when considering
machine failures. What if a single term-segment becomes unavailable? Engine
users suddenly cannot get any results for a nontrivial number of terms. With the
document-based technique, a dead machine simply means some percentage of
the indexed documents will be ignored during search. That’s not great, but it’s
not catastrophic. Document-based segmentation allows the system to keep chug-
ging in the face of failure.

10.1.2 Other Nutch features
■ The Query Handler asks each Index Searcher for only a small number of

documents (usually 10). Since results are integrated from many Index
Searchers, there’s no need for a lot of documents from any one source,
especially when users rarely move beyond the first page of results.

■ Each user query is actually expanded to quite a complicated Lucene query
before it is processed.2 Each indexed document contains three fields: the
content of the web page itself, the page’s URL text, and a synthetic docu-
ment that consists of all the anchor text found in hyperlinks leading to the
web page. Each field has a different weight. The Nutch Query Handler
generates a Lucene boolean query that contains the search engine user’s
text in each of the three fields.

■ Nutch also specially indexes combinations of words that occur extremely
frequently on the Web. (Many of these are HTTP-related phrases.) These
sequences of words occur so often that it’s needless overhead to search for

1 Except in the case of multiword queries, which would require a limited amount of integration.
2 Authors’ note: See more on this query expansion in section 4.9.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 329
each component of the sequence independently and then find the intersec-
tion. Rather than search for these terms as separate word pairs, we can
search for them as a single unit Nutch must detect at index-time. Also,
before contacting the Index Searcher, the Query Handler looks for any of
these combinations in the user’s query string. If such a sequence does occur,
its component words are agglomerated into a single special search term.

■ The Nutch fetcher/indexer prepares HTML documents before indexing
them with Lucene. It uses the NekoHTML parser to strip out most HTML
content and indexes just the nonmarkup text. NekoHTML is also useful to
extract the title from an HTML document.

■ Nutch does not use stemming or term aliasing of any kind. Search engines
have not historically done much stemming, but it is a question that comes
up regularly.

■ The Nutch interprocess communication network layer (IPC) maintains a
long-lasting TCP/IP connection between each Query Handler and each
Index Searcher. There are many concurrent threads on the Query Handler
side, any of which can submit a call to the remote server at a given address.
The server receives each request and tries to find a registered service
under the given string (which runs on its own thread). The client’s request-
ing thread blocks until notified by the IPC code that the server response
has arrived. If the response takes longer than the IPC timeout, the IPC
code will declare the server dead and throw an exception.

10.2 Using Lucene at jGuru

Contributed by Terence Parr

jGuru.com is a community-driven site for Java developers. Programmers can
find answers among our 6,500 FAQ entries and ask questions in our forums.
Each topic is managed by a guru (a topic expert selected by jGuru management)
who mines the forum questions and responses looking for interesting threads
that he or she can groom into a good FAQ entry. For example, the authors of this
book, Erik Hatcher and Otis Gospodneti, are gurus of the Ant and Lucene top-
ics, respectively, at jGuru. Launched in December 1999, jGuru now has more
than 300,000 unique visitors per month, nearly 300,000 registered users, and
over 2,000,000 page views per month.

 Although the site appears fairly simple on the outside, the server is a 110k
line pure-Java behemoth containing all sorts of interesting goodies such as its
Licensed to Jason Ruesch <krhonos713@hotmail.com>

330 CHAPTER 10
Case studies
StringTemplate engine (http://www.antlr.org/stringtemplate/index.tml) for gen-
erating multiskin dynamic web pages. Despite its size and complexity, jGuru
barely exercises a Linux-based dual-headed 800Mhz Pentium server with 1Gb
RAM running JDK 1.3. I will limit my discussion here, however, to jGuru’s use of
Lucene and other text-processing mechanisms.

 Before Lucene became available, we used a commercially available search
engine that essentially required your server to spider its own site rather than
directly fill the search database from the main server database. Spidering took
many days to finish even when our site had few FAQ entries and users. By build-
ing search indexes with Lucene directly from our database instead of spidering,
the time dropped to about 30 minutes. Further, the previous search engine had
to be separately installed and had its own bizarre XML-based programming lan-
guage (See my article “Humans should not have to grok XML” [http://www-
106.ibm.com/developerworks/xml/library/x-sbxml.html] for my opinions on
this), making the system more complicated and unreliable. Lucene, in contrast,
is just another JAR file deployed with our server.

 This description is a nuts-and-bolts description of how jGuru uses Lucene
and other text-processing facilities to provide a good user experience.

10.2.1 Topic lexicons and document categorization

One of the design goals of jGuru is to make it likely you will receive an answer to
your question. To do that, we try to increase the signal-to-noise ratio in our
forums, spider articles from other sites, and allow users to filter content accord-
ing to topic preferences. All of this relies on knowing something about topic ter-
minology employed by the users.

 For example, consider our noise-reduction procedure for forum postings.
There is nothing worse than an already-answered question, a database question
in the Swing forum, or a thread where people say “You’re an idiot.” “No,
you’re an idiot.” We have rather successfully solved this problem by the follow-
ing procedure:

1 If there are no Java-related keywords in the post, ask the user to rephrase.

2 If the post uses terminology most likely from a different topic, suggest
the other likely topic(s) and let them click to move the post to the appro-
priate forum.

3 Use Lucene to search existing FAQ entries to see if the question has
already been answered. If the user does not see the right answer, he or she
must manually click Continue to actually submit something to the forum.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 331
How do we know what the lexicon (that is, the vocabulary or terminology) for a
particular topic is? Fortunately, jGuru is a domain-specific site. We know that Java
is the main topic and that there are subtopics such as JSP. First, I spidered the
New York Times and other web sites, collecting a pool of generic English words.
Then I collected words from our FAQ system, figuring that it was English+Java.
Doing a fuzzy set difference, (Java+English)-English, should result in a set of Java-
specific words. Using something like TFIDF (term frequency, inverse document
frequency), I reasoned that the more frequently a word was in our FAQs and the
less frequently it was used in the plain English text, the more likely it was to be a
Java keyword (and vice versa). A similar method gets you the Java subtopic lexi-
cons. As time progresses, existing topic lexicons drift with each new FAQ entry.
The corresponding lexicon is updated automatically with any new words and
their frequencies of occurrence; the server operator does not have to do anything
in order to track changes in programmer word usage.

 jGuru snoops other Java-related sites for articles, tutorials, forums, and so on
that may be of interest to jGuru users. Not only are these items indexed by
Lucene, but we use our topic vocabularies to compute the mostly likely topic(s).
Users can filter for only, say, snooped JDBC content.

10.2.2 Search database structure

On to Lucene. jGuru has 4 main Lucene search databases stored in directories:

■ /var/data/search/faq—Content from jGuru FAQs
■ /var/data/search/forum—Content from jGuru forums
■ /var/data/search/foreign—Content spidered from non-jGuru sources
■ /var/data/search/guru—Content related to jGuru users

Within the server software, each database has a search resource name similar to
a URL:

■ jGuru:forum
■ jGuru:faq
■ foreign
■ jGuru:guru

The reason we have separate search databases is that we can rebuild and search
them separately (even on a different machine), a corruption in one database
does not affect the others, and highly specific searches are often faster due to
partitioning (searching only FAQs, for example).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

332 CHAPTER 10
Case studies
 The jGuru software also has groups of resources such as universe that means
every search resource. Search resources may also have topics. For example, jGuru:
faq/Lucene indicates only the Lucene FAQ entries stored in the jGuru database.

 Within the foreign resource are sites such as

■ foreign:devworks
■ foreign:javaworld

The search boxes are context-sensitive so that when viewing a JDBC forum page,
you’ll see the following in the HTML form for the search box:

<INPUT type=hidden NAME=resource VALUE="jGuru:faq/JDBC">
<INPUT type=hidden NAME=resource VALUE="jGuru:forum/JDBC">

This indicates jGuru should search only the FAQ/forum associated with JDBC. If
you are on the FAQ or Forum zone home page, you’ll see

<INPUT type=hidden NAME=resource VALUE="jGuru:faq">
<INPUT type=hidden NAME=resource VALUE="jGuru:forum">

From the home page, you’ll see:

<INPUT type=hidden NAME=resource VALUE="universe">

Further, related topics are grouped so that requesting a search in, say, Servlets
also searches JSP and Tomcat topics. The search manager has predefined defini-
tions such as

new SearchResourceGroup("jGuru:faq/Servlets",
 "Servlets and Related FAQs",
 new String[] {"jGuru:faq/Servlets",
 "jGuru:faq/JSP",
 "jGuru:faq/Tomcat"}
)

jGuru will launch most multiple resource searches in parallel to take advantage
of our dual-headed server unless the results must be merged into a single result.

 Finally, it is worth noting that search resources are not limited to Lucene data-
bases. jGuru has a number of snoopers that scrape results on demand from
search engines on other sites. The jGuru querying and search result display soft-
ware does not care where a list of search results comes from.

10.2.3 Index fields

All jGuru Lucene databases have the same form for consistency, although some
fields are unused depending on the indexed entity type. For example, the for-
eign search database stores a site ID, but it is unused in the regular jGuru Lucene
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 333
database. Some fields are used for display, and some are used for searching. The
complete list of fields is shown in table 10.1.

When an entry is returned as part of a search, the title, link, date, type, and
description fields are displayed.

 All the FAQ entries, forums, foreign articles, guru bios, and so on use the con-
tents field to store indexed text. For example, a FAQ entry provides the question,
answer, and any related comments as contents (that is, the indexed text). The
title is set to the FAQ question, the link is set to /faq/view.jsp?EID=n for ID n, and
so on. The search display software does not need to know the type of an entity—
it can simply print out the title, link, and description.

10.2.4 Indexing and content preparation

There are two things you need to know to create a Lucene search database: how
you are going to get information to spider, and what processing you are going to
do on the text to increase the likelihood of a successful query.

 You should never build a search database by crawling your own site. Using the
HTTP port to obtain information and then removing HTML cruft when you have
direct access to the database is insanity. Not only is direct transfer of information
much faster, you have more control over what part of the content is indexed.

 jGuru indexes new content as it is added so you can post a question and then
immediately search and find it or register and then immediately find your name.

Table 10.1 jGuru Lucene index fields

Field name Description

EID Keyword used as unique identifier

site Keyword used by foreign db only

date Keyword (format DateField.dateToString(...))

type Keyword (one word) in set {forum, article, course, book, doc, code, faq, people}

title Text (such as FAQ question, Forum subject, article title)

link UnIndexed in jGuru; keyword in foreign db (link to entity)

description UnIndexed (for display)

topic Text (one or more topics separated by spaces)

contents UnStored (the main search field)
Licensed to Jason Ruesch <krhonos713@hotmail.com>

334 CHAPTER 10
Case studies
After a search database is built, it is dynamically kept up to date. There is never a
need to spider unless the database does not exist. A useful automation is to have
your server sense missing search databases and build them during startup.

 jGuru highly processes content before letting Lucene index it. The same pro-
cessing occurs for index and query operations; otherwise, queries probably will
not find good results. jGuru converts everything to lowercase, strips plurals,
strips punctuation, strips HTML tags (except for code snippets in <pre> tags),
and strips English stop words (discussed later).

 Because jGuru knows the Java lexicon, I experimented with removing non-Java
words during indexing/querying. As it turns out, users want to be able to find non-
Java keywords such as broken as well as Java keywords, so this feature was removed.

 Stripping plurals definitely improved accuracy of queries. You do not want
window and windows to be considered different words, and it also screws up the
frequency information Lucene computes during indexing. I gradually built up
the following routine using experience and some simple human and computer
analysis applied to our corpus of FAQ entries:

/** A useful, but not particularly efficient plural stripper */
public static String stripEnglishPlural(String word) {
 // too small?
 if (word.length()<STRIP_PLURAL_MIN_WORD_SIZE) {
 return word;
 }
 // special cases
 if (word.equals("has") ||
 word.equals("was") ||
 word.equals("does") ||
 word.equals("goes") ||
 word.equals("dies") ||
 word.equals("yes") ||
 word.equals("gets") || // means too much in java/JSP
 word.equals("its"))
 {
 return word;
 }
 String newWord=word;
 if (word.endsWith("sses") ||
 word.endsWith("xes") ||
 word.endsWith("hes")) {
 // remove 'es'
 newWord = word.substring(0,word.length()-2);
 }
 else if (word.endsWith("ies")) {
 // remove 'ies', replace with 'y'
 newWord = word.substring(0,word.length()-3)+'y';
 }
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 335
 else if (word.endsWith("s") &&
 !word.endsWith("ss") &&
 !word.endsWith("is") &&
 !word.endsWith("us") &&
 !word.endsWith("pos") &&
 !word.endsWith("ses")) {
 // remove 's'
 newWord = word.substring(0,word.length()-1);
 }
 return newWord;
}

After looking at the histogram from about 500,000 English words I grabbed
from various web sites, I found the following list to be effective in reducing
indexing noise:

public static final String[] EnglishStopWords = {
 "I", "about", "also", "an", "and", "any", "are", "aren", "arent",
 "around", "as", "at", "be", "because", "been", "before", "being",
 "between", "both", "but", "by", "can", "cannot", "cant", "come",
 "could", "day", "did", "do", "doe", "does", "doesn", "doesnt",
 "dont","either", "even", "every", "for", "from", "get",
 "great", "had", "has", "hasn", "hasnt", "have", "havn",
 "havnt", "he", "help", "her", "here", "him", "his", "how",
 "in", "info", "into", "is", "it", "its", "just", "let", "life",
 "live", "many", "may", "me", "most", "much", "must", "my",
 "need", "not", "of", "on", "one", "only", "or", "other", "our",
 "please", "question", "re", "really", "regard", "said", "say",
 "see", "she", "should", "since", "so", "some", "still", "story",
 "such", "take", "than", "thank", "that", "the", "their", "them",
 "then", "there", "these", "they", "thing", "those", "thought",
 "through", "thru", "thus", "to", "told", "too", "use", "used",
 "uses", "using", "ve", "very", "want", "was", "way", "we",
 "well", "were", "what", "when", "where", "which", "who", "why",
 "will", "with", "without", "won", "wont", "would", "you", "your"
};

Words like hasn are the result of hasn’t being stripped of punctuation.

10.2.5 Queries

jGuru works hard to provide good, consistent search results. From carefully pre-
pared indexes, jGuru grooms search words and translates them to Lucene-specific
queries. This section summarizes how results are displayed, outlines how queries
are generated, provides an English plural stripper, and finally characterizes jGuru
search words from the year 2002.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

336 CHAPTER 10
Case studies
Search results display and search types
Regardless of the source or type of entity, all results are normalized to show title,
link, date, and description. jGuru can provide results merged from multiple
databases and can provide results per source such as entries in the FAQs, entries
in the Forums, and so on. This is often useful because some content is edited and
some is not. You may want to ignore unedited content like forums occasionally.
Queries can also be limited to specific databases, topics, or sites by specifying a
resource name such as jGuru:faq/Lucene.

 Handling multiple pages of search results is an interesting problem. You do
not want to have to save and manage search results in a session variable so that
page 2 can be displayed when a user clicks the next page link. Fortunately, this
problem is easily solved: it turns out that Lucene is fast enough to just requery on
every results page and then ask for nth page of results.

NOTE We’d like to emphasize Terrence’s last sentence here: “…Lucene is fast
enough to just requery on every results page….” We mentioned this previous-
ly in section 3.2.2.

Computing Lucene queries from search words
jGuru first processes queries in the same manner it uses for preparing text to
index. Then, because Lucene assumes an OR-like default logic and users expect
AND logic, jGuru inserts AND in between the words of the query after normal
text processing such as stop-word removal. A search string of “close the data-
base” should find only those documents containing both close and database. If,
however, the number of words is bigger than a threshold, the query is left as is.
As the number of words increases, the probability of an AND-condition matching
anything at all approaches zero.

 To further improve search accuracy, queries sent to Lucene contain terms for
both title and content. The more of a field that a query matches, the more likely
you have a good match. So if you search for “class not found” and there is a FAQ
entry title “Why do I get class not found,” this entry should get a good score. If
you only searched the indexed content, the FAQ entry would incorrectly get a
much lower score.

 jGuru uses one final trick to improve search results. Keywords found in a
query such as methods and class names from the Java API are boosted to indicate
their importance. Getting the list of keywords from the API was a simple matter
of using javap on the .class files and parsing the results with ANTLR (http://
www.antlr.org).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 337
Query characteristics
jGuru logs all search queries because it will eventually use this feedback to auto-
matically improve search results (for example, by watching which FAQ entries
users visit after a search—those entries could then be boosted for similar queries
in the future). In this section, I have collected some statistics the reader may
find interesting.

 In the last full year of statistics, 2002, there were 1,381,842 total searches,
554,403 of which were unique (vis-à-vis equals()). There were 820,800 multi-
word and 561,042 single-word searches (about 40%). 829,825 queries referenced
jGuru databases specifically (versus foreign ones like developerWorks), with
597,402 searches in a particular topic.

Most popular Java search strings
Table 10.2 shows the top 35 terms of a search histogram (frequency count out of
1,381,842 searches). It provides a measure of the most popular terms in 2002.

Considering only the multiword queries, table 10.3 shows the 35 most popu-
lar searches.

Table 10.2 Top 35 most popular Java search terms

Frequency Full query string Frequency Full query string Frequency Full query string

4527 struts 1796 print 1442 log4j

3897 tomcat 1786 date 1414 jar

3641 JTable 1756 upload 1403 mod_jk

3371 jtable 1720 classpath 1369 mod_webapp

2950 session 1683 image 1330 blob

2702 jboss 1650 JTree 1323 apache

2233 jsp 1627 applet 1320 weblogic

2116 jdbc 1559 javascript 1267 ant

2112 xml 1536 servlet 1246 ejb

1989 jtree 1526 ftp 1229 connection pool

1884 javamail 1525 thread 1217 file upload

1827 web.xml 1476 cookie
Licensed to Jason Ruesch <krhonos713@hotmail.com>

338 CHAPTER 10
Case studies
As for topics (see table 10.4), the logs reveal the following histogram (truncated
to 35 entries) of 597,402 total FAQ or Forum topic-specific searches. Naturally,
topics introduced partway through 2002 are artificially less popular in this list.

Table 10.3 35 most popular multi-word queries

Frequency Full query string Frequency Full query string Frequency Full query string

1229 connection pool 376 properties file 276 back button

1217 file upload 362 jsp include 270 memory leak

741 entry stream 360 web services 266 property file

618 session timeout 360 copy file 264 garbage collection

603 tomcat apache 355 nt service 253 inner class

553 connection pooling 342 file download 243 primary key

502 upload file 336 virtual host 242 jsp session

500 read file 329 tomcat 4 242 class not found

494 apache tomcat 327 out of memory 239 jdk 1.4

428 stored procedure 322 error page 239 applet servlet

422 java mail 301 http post 233 jsp forward

384 drag and drop 281 date format

Table 10.4 Top 35 topics

Frequency
Specific FAQ or

Forum topic
Frequency

Specific FAQ or
Forum topic

Frequency
Specific FAQ or

Forum topic

191013 Tomcat 22118 AWT 9120 Collections

129035 JSP 21940 Applets 8242 Threads

96480 Servlets 21288 Networking 8183 IntellijIDEA

84893 Struts 18100 VAJ 7764 Tools

72015 Swing 17663 AppServer 7446 JMS

51871 JDBC 17321 XML 7428 I18N

47092 JavaMail 14603 JNI 7269 J2ME

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene at jGuru 339
10.2.6 JGuruMultiSearcher

Lucene does not have a standard object for searching multiple indexes with dif-
ferent queries. Because jGuru needs to search the foreign database versus its
internal search databases with slightly different query terms, I made a subclass of
Lucene’s MultiSearcher, JGuruMultiSearcher (shown in listing 10.1), to correct
the situation.

NOTE JGuruMultiSearcher uses a bit of low-level internal Lucene API that is
not covered in this book. Please refer to Lucene’s Javadocs for more
details on TopDocs and ScoreDoc as well as the Searcher interface.

/** Since lucene's multisearcher was final,3 I had to wholesale
 * copy it to fix a limitation that you cannot
 * have multiple queries, hence, no heterogeneous lucene
 * search db's.
 */
public class JGuruMultiSearcher extends MultiSearcher {
 Query[] queries = null;

 /** Creates a searcher which searches <i>searchers</i>. */
 public JGuruMultiSearcher(Searcher[] searchers,
 Query[] queries) throws IOException {
 super(searchers);
 this.queries = queries;
 }

46471 JavaScript 14373 JBuilder 6828 Linux

38083 EJB 13584 Security 5884 Media

33765 JavaLanguage 10560 ANTLR 4886 CORBA

33546 Ant 10090 RMI 4876 Serialization

24075 IO 9395 JNDI

Table 10.4 Top 35 topics (continued)

Frequency
Specific FAQ or

Forum topic
Frequency

Specific FAQ or
Forum topic

Frequency
Specific FAQ or

Forum topic

Listing 10.1 Searching multiple indexes with different queries

3 This is no longer the case (as of Lucene 1.4). MultiSearcher has been opened up, and a Parallel-
MultiSearcher subclass has been added to the core. However, nothing is currently built in that per-
forms a different query on each index and merges the results like this JGuruMultiSearcher.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

340 CHAPTER 10
Case studies
 protected TopDocs search(Query query /* ignored */,
 Filter filter, int nDocs)
 throws IOException {
 HitQueue hq = new HitQueue(nDocs);
 float minScore = 0.0f;
 int totalHits = 0;

 // search each searcher
 for (int i = 0; i < searchers.length; i++) {
 if (queries[i]==null || searchers[i]==null) {
 continue;
 }
 TopDocs docs =
 searchers[i].search(queries[i], filter, nDocs);
 totalHits += docs.totalHits; // update totalHits
 ScoreDoc[] scoreDocs = docs.scoreDocs;
 for (int j = 0; j < scoreDocs.length; j++) {
 // merge scoreDocs into hq
 ScoreDoc scoreDoc = scoreDocs[j];
 if (scoreDoc.score >= minScore) {
 scoreDoc.doc += starts[i];// convert doc
 hq.put(scoreDoc); // update hit queue
 if (hq.size() > nDocs) { // if hit queue overfull
 hq.pop(); // remove lowest in hit queue
 // reset minScore
 minScore = ((ScoreDoc)hq.top()).score;
 }
 } else {
 break; // no more scores > minScore
 }
 }
 }

 ScoreDoc[] scoreDocs = new ScoreDoc[hq.size()];
 for (int i = hq.size()-1; i >= 0; i--) { // put docs in array
 scoreDocs[i] = (ScoreDoc)hq.pop();
 }

 return new TopDocs(totalHits, scoreDocs);
 }
}

10.2.7 Miscellaneous

Lucene makes a lot of files before you can perform an optimize() sometimes. We
had to up our Linux max file descriptions to 4,000 with ulimit -n 4000 to pre-
vent the search system from going insane.4

 I used to run a cron job in the server to optimize the various Lucene data-
bases (being careful to synchronize with database insertions). Before I discovered
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene in SearchBlox 341
the file descriptor issue mentioned earlier, I moved optimization to the insertion
point; that is, I optimized upon every insert. This is no longer necessary and
makes insertions artificially slow.

 The Lucene query string parser isn’t exactly robust. For example, querying
“the AND drag” screws up with the first because it is a stop word. The bug report
status was changed to “won’t fix” on the web site, oddly enough.5 Eventually I
built my own mechanism.

10.3 Using Lucene in SearchBlox

Contributed by Robert Selvaraj, SearchBlox Software Inc.

When we started to design SearchBlox, we had one goal—to develop a 100% Java
search tool that is simple to deploy and easy to manage. There are numerous
search tools available in the market but few have been designed with the manage-
ability of the tool in mind. With searching for information becoming an increas-
ing part of our daily lives, it is our view that manageability is the key to the
widespread adoption of search tools, especially in companies where the complex-
ity of the existing tools is the major stumbling block in implementing search
applications, not to mention the cost. Companies must be able to deploy search
functionality in the matter of minutes, not months.

10.3.1 Why choose Lucene?

While selecting an indexing and searching engine for SearchBlox, we were faced
with two choices: either use one of the several open-source toolkits that are avail-
able or build our own search toolkit. After looking at several promising toolkits,
we decided to use Lucene. The reasons behind this decision were

■ Performance—Lucene offers incredible search performance. Typical search
times are in milliseconds, even for large collections. This is despite the fact
that it is 100% Java, which is slow compared to languages like C++. In the
search tools industry, it is extremely important to have fast and relevant
search results.

■ Scalability—Even though SearchBlox is optimized for small to medium-
sized document collections (<250,000 documents), scalability was also a

4 Lucene 1.3 added the compound index format, making the file handle situation much less of an issue.
5 There are still open issues regarding stop words and QueryParser.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

342 CHAPTER 10
Case studies
critical criteria in choosing Lucene. We wanted to keep open the option of
supporting larger collections in SearchBlox at a later date. Lucene is cer-
tainly up to the task in terms of scalability. We are aware of a particular
project where Lucene is being used for 4 million document index with
<100 millisecond search times.

■ Extensive adoption—Usage of Lucene has grown tremendously over the last
couple of years. It has become highly popular with Information Retrieval
(IR) experts who have used Lucene as the search toolkit for their projects.
This has resulted in a great deal of Lucene add-on open-source code being
available to accomplish various specialized IR tasks. This can be a great
bonus when you wish to offer your users/customers new features on very
short development cycles.

10.3.2 SearchBlox architecture

Figure 10.1 shows the overall architecture of SearchBlox. Compared to Lucene,
which is a text indexing and search API, SearchBlox is a complete search tool. It
features integrated crawlers, support for different document types, provision for

Figure 10.1 SearchBlox system architecture
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Using Lucene in SearchBlox 343
several languages, and customizable search results; all controlled from a browser-
based Admin Console. As a pure Java solution, SearchBlox can be deployed to
any Servlet/JSP container, giving the customer complete flexibility in choosing
the hardware, operating system and application server.

10.3.3 Search results

SearchBlox provides the user with the option to see search results sorted by rele-
vance, sorted by date, or sorted alphabetically on the title. Search results in
SearchBlox are completely customizable using XSL style sheets. The search
results can also be delivered as XML to be consumed by an external application.
This is achieved by generating an XML document for each search result page. In
the results page, each search result is represented as shown here:

<result no="1">
 <score>27</score>
 <url>http://www.searchblox.com/faqs/question.php?qstId=22</url>
 <lastmodified>24 Nov 2003 07:40:15 EST</lastmodified>
 <indexdate>24 Nov 2003 07:40:15 EST</indexdate>
 <size>7408</size>
<title>SearchBlox<highlight>FAQs</highlight></title>
 <keywords />
 <contenttype>HTML</contenttype>
 <description><highlight>FAQs</highlight>
 Home / Browse Categories / Collections /
 Why is there a limit on the number of collections?
 Why is there a limit on the number of collections?
 There is a limit on the number of collections due to
 performance reasons. User Comments Why is t...
</description>
 <language>en</language>
</result>

This XML segment is generated from the Lucene Hits object. The data for the
title and description fields is then passed through a Highlighter class to highlight
the query terms. The highlighted terms are marked using the <highlight> tag.

 This mechanism gives the developer complete flexibility in customizing the
search results, choosing only the XML elements that are of significance to the
end user.

10.3.4 Language support

SearchBlox currently supports 17 languages including Japanese, Chinese (Sim-
plified and Traditional), and Korean. There are two main challenges in creating a
search tool that supports searching across multiple collections in several languages
Licensed to Jason Ruesch <krhonos713@hotmail.com>

344 CHAPTER 10
Case studies
■ Indexing documents with different encodings—The solution to this problem is to
normalize the document encoding. In the case of SearchBlox, all content is
converted to UTF-8 before indexing. SearchBlox uses several mechanisms
to detect the encoding of the document that is to be indexed.

■ Detecting the language of the content—The language of the content is
required for two purposes when indexing: to choose the correct analyzer
and to use the correct stop-words list. SearchBlox uses the language setting
specified at the time of collection creation as the language of the content.

10.3.5 Reporting Engine

A key element of SearchBlox is the Reporting Engine. It is crucial to know what
end users are searching for. Most commercial search tools provide a reporting
tool, which is either a log analyzer or a database-based tool. In SearchBlox, the
Reporting Engine is based on Lucene. Details of every search query are indexed
as a Lucene document. Precanned searches are executed on this Lucene index to
retrieve the various reporting statistics. This Lucene-based reporting engine
offers all the advantages of a database-based reporting system without the over-
head of using a database.

10.3.6 Summary

SearchBlox leverages the Lucene API to deliver a pure Java search tool. Using
Lucene has allowed SearchBlox to focus on the designing the usability of the
search tool rather than developing a new search API from scratch. With Java hav-
ing become a widespread enterprise standard and the increasing requirement for
search, SearchBlox will provide a truly usable search tool incorporating Lucene.

10.4 Competitive intelligence with Lucene in
XtraMind’s XM-InformationMinder™

Contributed by Karsten Konrad, Ralf Steinbach, and Holger Stenzhorn

Detailed knowledge about competitors, markets, costumers, and products is a
vital strategic advantage for any enterprise. But in the ever-growing flood of
information available today, the truly relevant information cannot be looked up
with common search methodologies anymore, even in a particular, narrow
domain. In this regard, aggregating information has become by far more time
consuming than its focused evaluation. Systematically and efficiently searching
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Competitive intelligence with Lucene 345
and identifying all important correlations, current trends, and developments in
the amount of data coming in every day has become more and more difficult, if
not impossible. Yet the paramount task of intelligence groups in companies is
exactly this: to keep track of all potentially important current news and to subse-
quently inform marketing, sales, or the strategic planning groups of any devel-
opments that might change the company’s business environment or direction.

 Hence, there is some real need for specialized sophisticated tools that provide
help in collecting and evaluating information for the knowledge workers in the
intelligence departments. XtraMind Technologies—a technology and solution
provider for natural-language and artificial intelligence–oriented systems such
as those used for automated text classification, document clustering, topic detec-
tion, and so forth—developed the XM-InformationMinder to target exactly
those needs in a web-based client/server application. One of the staple technolo-
gies we use in this application is Lucene.

 XM-InformationMinder was initially developed as a custom solution for a
large German generic drug manufacturer. They wanted a simple tool that could
on one hand supervise news about themselves, their competitors, and their
products on the Internet and on the other hand gather information on chemical
compounds and formulations used for the company’s drugs regarding pending
patents and counterindications, for example. The final product has become a
multipurpose application targeted at competitive and product intelligence in
any business area.

 XM-InformationMinder can basically be split into two subapplications: first, a
web-based information access portal that allows the user to perform searches for
particular documents or topics, the management of found documents via catego-
ries, the generation of reports for executives and so on; and second, an agent
that scours around the Internet and gathers the information to be prepared and
presented. Lucene is especially important to us in the information access portal.

 Some of the key points of the information access portal are

■ Full text and similarity search—XM-InformationMinder supports concept-
based, fuzzy, and similarity search and sorts the results by relevance. At
this, the search is able to tolerate misspellings. For interactive search by the
user, all retrieved information and relevant pages are then made accessible
through concept-based navigation methods.

■ Reporting—The reporting function is used to transform relevant informa-
tion into qualified statements and strategies. The application provides a
report editor where the user can insert and comment search results. The
Licensed to Jason Ruesch <krhonos713@hotmail.com>

346 CHAPTER 10
Case studies
resulting report documents can be made available by email or via the
search portal itself.

■ Visualization and navigation—Search strings and relevant related terms are
computed dynamically and are visualized through a graphical user interface
(see figure 10.2). Users can extend and control the search interactively and
intuitively navigate through the information space. This aids users who may
not be aware of some existent relevant cross-links, relations, or important
new topics within the given domain and enables the user to detect and
explore them. Their visualization through a user interface shows directly the
connections between documents within their contexts. Starting with one

Figure 10.2 Visualization indicating relations between antibiotics, anthrax, and the anti-anthrax
drug Cipro, manufactured by Bayer
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Competitive intelligence with Lucene 347
search string, users see documents related to their query in the form of a
graphical network. The visual navigation tool induces the search and auto-
matically extends the query. The relevant relations to other terms are always
computed at run-time relative to the original search term and the available
information in the document base, thus assuring precision and topicality.

The second subapplication is the agent, an information gatherer that is based on
a technology of intelligent software agents that are capable of distinguishing
essential from nonessential information. Through methods of machine learning
and language technology, the system achieves high levels of accuracy.
To train the system, users provide relevant sample texts, which XM-Information-
Minder analyses for common properties within their content. XM-Information-
Minder then uses this acquired knowledge (the so-called relevance model) for its
search and the evaluation of new information. As a second set of clues, users indi-
cate to XM-InformationMinder where relevant information is likely to be found
or which sources (web pages, competitors’ sites, portals, newsgroups, newsletters,
and so on) should be monitored systematically. In this process, the agent removes
redundant information automatically through the mentioned machine learning
and language technologies.

10.4.1 The system architecture

XM-InformationMinder has been designed and developed as a pure Java,
J2EE-based enterprise application that can be run on any standard application
server platform.

 The functional partition introduced earlier is directly reflected in the system’s
design: there exists first a software agent that collects information and second a
search portal that provides this information and helps in preparing reports on
certain developments and trends. The two parts are loosely linked via Java Mes-
saging Service, and so this makes it possible to distribute the two parts and their
tasks on more than one machine—that is, the agent part runs on one machine,
and the portal part on another.

 The software agent is an intelligent agent that uses a machine learning text
classifier for distinguishing between relevant and irrelevant information. It basi-
cally works as a flexible web crawler that is able to stop crawling whenever it finds
the currently visited web page not “interesting” or suitable. The decisions of the
agent are based on a predefined relevance model (as mentioned earlier) that has
been trained from both examples and terminology from the particular area of
interest, in this case the generics pharmaceutical drug industry. The starting
Licensed to Jason Ruesch <krhonos713@hotmail.com>

348 CHAPTER 10
Case studies
points for the agent’s searches are mostly newsletters from several online news-
wire agencies that it receives via subscribed email services. It also reacts to
changes on (user-defined) important web pages such as competitors’ web sites.
Furthermore, there also exist several newsgroups together with the usual articles
on the industry (found, for instance, in Yahoo’s directory) that can be scanned
for suitable input for the agent. See figure 10.3.

 The actual core of both system parts is based upon the functionalities pro-
vided by Lucene, with each employing its own index that it works on directly.
Additionally, each part employs a database to hold basic infrastructure informa-
tion, such as user and configuration management. The database also redun-
dantly keeps some of the information that can be found in the Lucene index for
two specific reasons:

■ Failure recovery—If the index somehow becomes corrupted (for example,
through disk failure), it can easily and quickly be rebuilt from the data
stored in the database without any information loss. This is further lever-
aged by the fact that the database can reside on a different machine.

■ Access speed—Each document is marked with a unique identifier. So, in the
case that the application needs to access a certain document by a given

Figure 10.3 Depiction of the overall design and workflow of the system
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Competitive intelligence with Lucene 349
identifier, the database can return it more efficiently than Lucene could.
(the identifier is the primary key of a document in the database). If we
would employ Lucene here, it would have to search its whole index for the
document with the identifier stored in one of the document’s fields.

The interaction of the agent and the information access portal subapplications is
presented in the following brief workflow overview:

1 The agent first reads newsletter emails sent to it and inspects them as
well as all the given other sources for new links that it should process.

2 The agent performs the crawling process and fetches all relevant web
pages, PDF, Word, Rich Text, and other documents that can be converted
to plain text. (This usually happens during nighttime because of the
reduced Internet traffic.) During this procedure, all crawled data is first
converted on the fly from the original format into plain text and subse-
quently stored into a database for further processing.

3 The agent process continues by feeding the Lucene indexer with the
stored content data and putting the results into its proper index.

4 After the indexing, the agent sends a message to the portal application.
This in turn starts to merge the agent index into its own, inserts the data
(including all metadata—, such as the crawling time of a document) from
the agent database into the portal database, and transfers the stored web
pages and documents to a place for the portal to access.

One additional point to note is that transaction handling is supported: If the sys-
tem (either the agent or the information access portal) or a user adds a new doc-
ument into the index, then the agent first tries to write the data into the database
and then into the index. If one of the two steps fails, the whole transaction is
rolled back; by doing so, data integrity is ensured. The same applies for the dele-
tion of documents from the application.

 For our application, we modified the Lucene engine in such a way that it can
support advanced search methods like visual explorative topic maps and search
for similar documents. Because the information gathered by the software agent
often contains redundant information, we also had to extended Lucene’s index-
ing by automated redundancy filtering. Although Lucene certainly becomes
more powerful and flexible with our own algorithms and extensions, the excel-
lent basic data structures and persistence of Lucene are used without any modifi-
cation. We found Lucene an ideal platform for our technologies and still apply
Lucene’s basic full-text search functionality in our application.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

350 CHAPTER 10
Case studies
10.4.2 How Lucene has helped us

There can be no discussion on this matter: Lucene is a heaven-sent tool for any
Java developer who needs an open-source, extensible full-text search engine. It
outperforms expensive commercially available systems, yet it comes with a
clean and easy-to-understand design that is open to extensions. XtraMind’s busi-
ness is—in a way—to provide services and solutions around advanced natural-
language processing, and Lucene represents a very efficient information
retrieval platform in that context.

 Of course, we made some improvements to Lucene to suit our needs. First, we
found the fuzzy expansion (FuzzyEnum) of Lucene to be too inefficient on very
large collections of text; therefore, we replaced the original with one of our own
methods that reduces the number of words expanded. Second, we extended the
result collection mechanism with a priority queue that restricts the result sets to a
few best dozen hits for certain time-consuming searches. There have been almost
no changes to the core of Lucene, because all changes we had to make for lan-
guage preprocessing could be done by inheriting and modifying class variants,
mainly for the Similarity class and the HitCollector. For instance, we extended
the Similarity class by a method that collects the actual terms of a query such
that we could do highlighting and text extraction more easily.

 We developed a wrapper for the core engine of Lucene into an additional
comfort layer that performs additional functions like automated spelling correc-
tion and advanced query processing; this helps us integrate cross-lingual infor-
mation retrieval capabilities into the existing framework.

 Having said this, we do not have a particularly long list of wishes for Lucene.
But one of the problems where we could not find any good solution was the fast
generation of extracts for a given search result hit. We currently index the docu-
ment content and then retokenize the content when we generate short text
extracts. The problem is that this method is not really efficient when indexing
long documents: the index becomes very large, and the extract generation takes
up way too much time. Therefore we would like to see some method introduced
that can quickly compute a window of words around a given search term for any
document without having to access its content.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Alias-i: orthographic variation with Lucene 351
10.5 Alias-i: orthographic variation with Lucene

Contributed by Bob Carpenter of Alias-i, Inc.

Users seeking information in a large document collection are typically interested
in individuals, not tokens. This goal is subverted by two facts of human language:
name overloading and name variation. Name overloading involves using the same
name to refer to different people. Name variation involves using different names
to refer to the same person.

 The focus of this discussion is name variation and how Lucene can be used to
improve searches for something with many aliases. Specifically, we model a term
as a bag of character subsequences and store each such bag of sequences as a
Lucene document. Queries are similarly parsed into bags of character subse-
quences from which boolean query clauses are formed. The hits resulting from a
query term will be the documents representing the terms in order of their fuzzy
string similarity to the query term. Jumping ahead a bit, we tokenize a term such
as Al Jazeerah as subsequences of length 2 to 4:

"Al", "l ", " J", ..., "ah",
...,
"Al Ja", "l Ja", " Jaz", ..., "erah"

Used as a query, "Al Jazeerah" returns the responses above the threshold shown
in table 10.5.

Table 10.5 Orthographic variation used in a query for “Al Jazeerah”

Score Result

999 Al Jazeerah

787 Al Jazeera

406 Jazeera

331 Al-Jazeera

304 al-Jazeera

259 Jazeera al-Jazirah

253 al-Jazeera TV

252 Al Jazirah

continued on next page
Licensed to Jason Ruesch <krhonos713@hotmail.com>

352 CHAPTER 10
Case studies
10.5.1 Alias-i application architecture

At Alias-i, we have concentrated on building tools and interfaces to be used by
professional information analysts, concentrating on two application domains:
government intelligence analysts tracking the world’s news, and biomedical
researchers tracking the genomics and proteomics research literature. Specializ-
ing in particular subdomains is often necessary in order to import the necessary
knowledge to solve the problems introduced by name overloading and variation.

 The high-level information flow and data-storage architecture of the Alias-i
Tracker system is illustrated in figure 10.4.

 From the highest level, the standard three-tier web architecture is organized
form left-to-right in figure 10.4. The tiers consist of an external interface, an
internal model (the so-called business logic), and an encapsulated data store. Doc-
ument processing within the model follows a queue-based pipeline. This
arrangement was chosen primarily for its scalability properties. Even within a
single JVM, I/O load balancing can be performed with very good responsiveness
using the lock-split queues of Doug Lea’s util.concurrent package. The queue-
based architecture easily scales to multiple machines with transactional robust-
ness by implementing the queues as a Java 2 Enterprise Edition (J2EE) Java Mes-
sage Service (JMS) provider.
Document feeds gather documents from external sources and push them onto
the first queue in the pipeline. Current implementations include a subscriber in
a Publish/Subscribe pattern, a web-page downloader based on searches through
the Google API, and a disk-based directory walker. Documents are transformed
by their feed handler, based on their provenance, into our standardized XML
format for news documents and placed in the incoming document queue. HTML
is normalized with Andy Clark’s NekoHTML and processed with SAX.

 The first two steps in the pipeline store the documents and index them.
Indexing is carried out with the Apache Lucene search engine. The Lucene
indexer itself buffers documents in a RAMDirectory, using a separate thread to
merge them periodically with an on-disk index.

222 Arab channel al-Jazeera

213 Al-jazeera

Table 10.5 Orthographic variation used in a query for “Al Jazeerah” (continued)

Score Result
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Alias-i: orthographic variation with Lucene 353
The next two stages of processing are linguistic in nature. LingPipe, Alias-i’s
open-source linguistic annotation package, is used to annotate sentence bound-
aries, extract names of relevant individuals for a particular application, and
determine when two names in the same document refer to the same individual.

 Finally, a linguistically annotated document is processed by the tracker mod-
ule to cluster names that refer to the same individual across documents and store
the entities in a database.

 For instance, typical output would look like this:

<DOCUMENT>
 <P>
 <sent>
 <ENAMEX id="393" type="PERSON">John Smith</ENAMEX>
 lives in <ENAMEX id="394" type="LOCATION">Washington</ENAMEX>.
 </sent>
 <sent>
 Mr. <ENAMEX id="393" type="PERSON">Smith</ENAMEX> works for

Figure 10.4 Alias-i Tracker architecture
Licensed to Jason Ruesch <krhonos713@hotmail.com>

354 CHAPTER 10
Case studies
 <ENAMEX id="395" type="ORGANIZATION">
 American Airlines
 </ENAMEX>.
 </sent>
 </P>
</DOCUMENT>

We have applied LingPipe to applications in several domains and languages,
including Hindi, Spanish, Dutch and English news, and English genomics/
proteomics. LingPipe is distributed with a model for English news that labels
people, places, and organizations. It is also distributed with a model for English
genomics that labels proteins, DNA, and RNA, subcategorizing them based on
whether they are a family, structure, molecule, substructure, or binding site, as
well as labeling cells and organisms.

 The user-interface architecture follows the ubiquitous model-view-control
pattern. The tracker plays the role of model, accepting control in the form of
document addition from the back-end document-processing queue. It also
accepts control from the user’s end application. The model acts as a façade to
the databases, providing views of the data to the front-end interface. The con-
troller handling the application control flow is implemented as part of the appli-
cation and run within the web container.

10.5.2 Orthographic variation

There is a range of causes for name variation:

■ Misspellings—A query term such as Smith may be spelled accidentally as
Smth or Smiht. Search engines such as Google now normally provide alter-
native suggestions for terms that appear very unlikely compared to high-
likelihood variants.

■ Alternative spellings—Some terms simply have more than one conventionally
acceptable spelling, either within or across dialects. Consider colour and
color in British and American English or, on the same topic, the colors grey
and gray. Even proper names may vary, such as MacDonald and McDonald
or O’Leary and Oleary.

■ Reduced character sets—Often terms from languages with character sets that
are richer than English, such as German, are reduced to different forms in
English, such as Schütze being rendered as Schuetze or Schutze, or the
English word naïve alternating with the simpler character set version naive.

■ Alternative punctuation and tokenization—Some terms vary with respect to how
they are tokenized. This is particularly common with biological terminology,
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Alias-i: orthographic variation with Lucene 355
where the same protein may be referred to as SLP-76 or SLP76. Person
names suffer the same problem, with variations such as Jun’ichi versus Juni-
chi. Company names suffer the same problem, with users potentially writ-
ing FooBar Corp as Foo Bar Corp, or common names such as cybercafe versus
cyber cafe. Even simple prefixes and suffixes are sometimes hyphenated and
sometimes not, as in coordinate vs. co-ordinate, or in acronyms, with IBM
alternating with I.B.M..

■ Transliteration—Alternate transliteration of foreign names leads to varia-
tions such as translations into English from Russian such as Tschaikowsky,
Tchaikovsky, and Chaikovsky, or from Chinese such as Looi, Lui, and Loui.
These may affect tokenization as well, as in the variation between Abd al and
Abdul or among Sa ad, Sa’ad, and Saad, transliterated from Arabic.

■ Name specificity variation—There are various levels of specificity for names,
such as the generic protein p53 versus its bacterial and insect varieties p53b
and p53i.

■ Abbreviated forms—Biological terminology is full of semi-standardized
abbreviations for terms, such as linDNA for linearized DNA.

■ Morphological variation—There is also a wide range of morphological varia-
tion, from simple suffixes like plural gene versus genes to prefixes such as
binding, cobinding, and co-binding.

A final problem we have in the biomedical domain is that many common stop
words are also acronyms or names of genes, and are even written lowercase, as in
genes not, if, and for.

 The tokenization and variant problems are partly ameliorated by standard
tokenization, stemming, and stop lists. For instance, p53 will match p53b if the lat-
ter is tokenized as p, 53, and b. Standard stemmers handle some of the problems
with morphological variation, while at the same time introducing problems for
search precision by equating two terms that should be kept separate and remov-
ing relevant terms such as the gene names not, if, and for. Stop lists can deal with
some of the problems with mismatched punctuation if punctuation is removed
from search.

10.5.3 The noisy channel model of spelling correction

The standard spelling correction model is based on Claude Shannon’s noisy-
channel model (Manning and Schütze 2003). The noisy channel model assumes
that messages are being chosen according to a probabilistic distribution, P(mes-
sage), and rendered as a signal that is received by a listener, P(signal|message).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

356 CHAPTER 10
Case studies
The recipient’s job is to decode the intended message from the retrieved signal.
Shannon showed that this process is optimized in the case where the message
decoded from a given signal is the message that maximizes the joint probability
P(message,signal) = P(message) * P(signal|message).

 For spelling correction, suppose we are able to estimate the probability
P(spelling|word) of a spelling given a word. For instance, P("Jones"|"Jones")
will be very high, but the transposition typo case P("Jnoes"|"Jones") and the
deletion typo case P("Jone"|"Jones") will be higher than a fully reversed spelling
P("senoJ"|"Jones") or completely unrelated outcome P("Smith"|"Jones"). Sim-
ilarly P("confusible"|"confusable") will be high in a good model because
reduced i and a sound the same and are often confused in spelling. Probabilistic
models of this kind are typically implemented through a notion of edit distance
(Gusfield 1997).

 There will also be a probability for the underlying words in question. For
instance, IBM might have a much higher probability (say, 1/1000) than BM (say,
1/10,000,000) in text. Then when a term like BM is seen, we measure P("BM") *
P("BM"|"BM") versus P("IBM") * P("BM"|"IBM"). In essence, we ask whether the
probability of a BM times the probability of spelling the word BM as BM is greater
or less than the probability of IBM times the probability of mistyping IBM as BM.
In addition to the first-best hypothesis, the top N hypotheses are also easy to
decode. This is how Microsoft Office is able to convert hte into the and to provide
more suggestions in cases where it’s not 100% confident in its alternate choice. It
is also how Google is able to provide alternate spelling suggestions.

10.5.4 The vector comparison model of spelling variation

A popular statistical (although not probabilistic) model for comparing two words
for similarity of spelling involves comparing their character subsequences (Anglell
et al 1983). A sequence of n characters is typically called a character n-gram. The
character n-grams for John are the 0-gram “”; the unigrams “J”, “o”, “h”, “n”; the
bigrams “Jo”, “oh”, “hn”; the trigrams “Joh” and “ohn”; and the 4-gram “John”.
The term Jon has n-grams ““, “J”, “o”, “n”, “Jo”, “on”, and “Jon”.

 In fact, it’s been demonstrated for text search that replacing a text with all of
its 4-grams, and analyzing queries with TF/IDF-weighted cosine term vectors,
provides precision and recall results for search very similar to using whole word
search (Cavnar 1994). The analyzer and query parser we present next could be
used to implement a full information retrieval system based on n-grams.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Alias-i: orthographic variation with Lucene 357
10.5.5 A subword Lucene analyzer

It is simple to extract the n-grams from a word with Lucene by using a special-
ized analyzer. The token stream class shown in listing 10.2 does the job.

private static int MIN_NGRAM = 2;
private static int MAX_NGRAM = 4;

public static class NGramTokenStream extends TokenStream {
 private int mLength = MIN_NGRAM;
 private int mStart = 0;
 private final String mToken;
 public NGramTokenStream(String token) {
 mToken = token;
 }
 public Token next() {
 int mEnd = mStart + mLength;
 if (mLength > MAX_NGRAM || mEnd > mToken.length())
 return null;
 String s = mToken.substring(mStart,mEnd);
 Token result = new Token(s,mStart,mEnd);
 if (mEnd == mToken.length()) {
 ++mLength;
 mStart = 0;
 } else {
 ++mStart;
 }
 return result;
 }
}

Assuming we have a method String readerToString(Reader) that reads the con-
tents of a reader into a string without throwing exceptions, we can convert the
token stream into an analyzer class directly:6

public static class SubWordAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 String content = readerToString(reader);
 return new NGramTokenStream(content);
 }
}

Listing 10.2 n-gramming TokenStream

6 Authors’ note: The KeywordAnalyzer in section 4.4 converts a Reader to a String and could be
adapted for use here.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

358 CHAPTER 10
Case studies
With the analyzer and the set of terms we are interested in, it is straightforward
to construct documents corresponding to terms with the following method:

public static Directory index(String[] terms) {
 Directory indexDirectory = new RAMDirectory();
 IndexWriter indexWriter
 = new IndexWriter(indexDirectory,new SubWordAnalyzer(),true);
 for (int i = 0; i < lines.length; ++i) {
 Document doc = new Document();
 doc.add(new Field(NGRAM_FIELD,lines[i],false,true,true));
 doc.add(
 new Field(FULL_NAME_FIELD,lines[i],true,false,false));
 indexWriter.addDocument(doc);
 }
 indexWriter.optimize();
 indexWriter.close();
 return indexDirectory;
}

Note that it stores the full name in its own field to display retrieval results. We
employ the same n-gram extractor, converting the n-gram tokens into term
query clauses:

public static class NGramQuery extends BooleanQuery {
 public NGramQuery(String queryTerm) throws IOException {
 TokenStream tokens = new NGramTokenStream(queryTerm);
 Token token;
 while ((token = tokens.next()) != null) {
 Term t = new Term(NGRAM_FIELD,token.termText());
 add(new TermQuery(t),false,false);
 }
 }
}

Note that they are added to the boolean query as optional terms that are neither
required nor prohibited so that they will contribute to the TF/IDF matching sup-
plied by Lucene. We simply extend the IndexSearcher to build in the n-gram
query parser:

public static class NGramSearcher extends IndexSearcher {
 public NGramSearcher(Directory directory) {
 super(IndexReader.open(indexDirectory));
 }
 public Hits search(String term) {
 Hits = search(new NGramQuery(term));
 }
}

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Alias-i: orthographic variation with Lucene 359
The nice part about this implementation is that Lucene does all the heavy lift-
ing behind the scenes. Among the services provided are TF/IDF weighting of the
n-gram vectors, indexing of terms by n-grams, and cosine computation and
result ordering.

 Here’s an example of some of the queries run over 1,307 newswire docu-
ments selected from a range of American and Middle Eastern sources. Among
these documents, there were 14,411 unique people, organizations, and locations
extracted by LingPipe’s named entity detector. These entity names were then
indexed using 2-grams, 3-grams, and 4-grams. Then each of the names was used
as a query. Total processing time was under two minutes on a modest personal
computer, including the time to read the strings from a file, index them in mem-
ory, optimize the index, and then parse and execute each name as a query and
write out the results. In addition to the one in the introduction, consider the fol-
lowing result. The number of hits indicates the total number of names that
shared at least one n-gram, and only hits scoring 200 or above are returned:

Query=Mohammed Saeed al-Sahaf
Number of hits=7733
1000 Mohammed Saeed al-Sahaf
819 Muhammed Saeed al-Sahaf
769 Mohammed Saeed al-Sahhaf
503 Mohammed Saeed
493 Mohammed al-Sahaf
490 Saeed al-Sahaf
448 Mohammed Said el-Sahaf
442 Muhammad Saeed al-Sahhaf
426 Mohammed Sa'id al-Sahhaf
416 Mohammed Sahaf
368 Mohamed Said al-Sahhaf
341 Mohammad Said al-Sahaf
287 Mohammad Saeed
270 Mohammad Said al-Sahhaf
267 Muhammad Saeed al-Tantawi
254 Mohammed Sadr
254 Mohammed Said
252 Mohammed Bakr al-Sadr
238 Muhammad Said al-Sahaf
227 Mohammed Sadeq al-Mallak
219 Amer Mohammed al- Rasheed

In each of these cases, transliteration from Arabic presents spelling variation that
goes well beyond the ability of a stemmer to handle. Also note that not every
answer is a correct variation. On the other hand, the work of a stemmer is han-
dled neatly, as exemplified by
Licensed to Jason Ruesch <krhonos713@hotmail.com>

360 CHAPTER 10
Case studies
Query=Sweden
Number of hits=2216
1000 Sweden
736 Swede
277 Swedish

In particular, the larger the substring overlap, the larger the errors. For instance,
“Defense Ministry”, in addition to matching the correct variation “Ministry of
Defence” at 354, matches “Defense Analyst” at 278 and “Welfare Ministry” and
“Agriculture Ministry”, both at 265. At Alias-i, we blend character-level models
with token-level models for increased accuracy.

10.5.6 Accuracy, efficiency, and other applications

Accuracy can be tuned with precision/recall trade-offs in various ways. For a start,
terms can be lowercased. Alternatively, both lowercase and uppercase variants of
n-grams with uppercase in them can be supplied. Furthermore, n-grams can be
weighted based on their length, which is easily supported by Lucene. With
longer n-grams being upweighted, the returned distributions will be sharpened,
but the long-token overlap problem becomes more pronounced.

 The previous implementations are intended for expository purposes, not a
scalable application. For efficiency, the construction of Token objects could be
bypassed in the query constructor. A priority-queue-based HitCollector, or sim-
ply one that applied a threshold, should significantly reduce object allocation
during queries. Finally, a file-system directory could be applied to store more
data on disk.

10.5.7 Mixing in context

In addition to orthographic term variation, we also consider the context in which
a term occurs before deciding if two terms refer to the same individual. If the
words in a window around the term in question are taken into account, it is quite
possible to sort the three dozen different John Smiths appearing in two years of
New York Times articles based on the similarity of their contexts (Bagga and Bald-
win 1998). This performs at roughly 80% precision and recall as measured over
the relations between pairs of individuals that are the same; thus a true-positive
is a pair of mentions that are related, a false positive involves relating two men-
tions that should not be linked, and a false negative involves failing to relate two
mentions that should be linked. Together, the string variation and the context
variation are merged into an overall similarity score, to which clustering may be
applied to extract the entities (Jain and Dubes 1988).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Artful searching at Michaels.com 361
10.5.8 References
■ Alias-i. 2003. LingPipe 1.0. http://www.aliasi.com/lingpipe.
■ Anglell, R., B. Freund, and P. Willett. 1983. Automatic spelling correction

using a trigram similarity measure. Information Processing & Manage-
ment 19(4):305–316.

■ Bagga, Amit, and Breck Baldwin. 1998. Entity-Based Cross-Document
Coreferencing Using the Vector Space Model. Proceedings of the 36th
Meeting of the Association for Computational Linguistics. 79–85.

■ Cavnar, William B. 1994. Using an n-gram-based document representation
with a vector processing retrieval model. In Proceedings of the Third Text
Retrieval Conference. 269–277.

■ Clark, Andy. 2003. CyberNeko HTML Parser 0.9.3. http://www.apache.org/
~andyc/neko/doc/html/.

■ Gusfield, Dan. 1997. Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology. Cambridge University Press.

■ Jain, Anil K., and Richard C. Dubes. 1988. Algorithms for Clustering Data.
Prentice Hall.

■ Lea, Doug. 2003. Overview of package util.concurrent Release 1.3.4. http:/
/gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html.

■ Manning, Christopher D., and Hinrich Schütze. 2003. Foundations of Statis-
tical Natural Language Processing. MIT Press.

■ Sun Microsystems. 2003. J2EE Java Message Service (JMS). http://java.sun.
com/products/jms/.

10.6 Artful searching at Michaels.com

Contributed by Craig Walls

Michaels.com is the online presence for Michaels Stores, Inc., an arts and crafts
retailer with more than 800 stores in the United States and Canada. Using this
web site, Michaels targets crafting enthusiasts with articles, project ideas, and
product information designed to promote the crafting pastime and the Michaels
brand. In addition, Michaels.com also offers a selection of over 20,000 art prints
for purchase online.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

362 CHAPTER 10
Case studies
 With such a vast offering of ideas and products, Michaels.com requires quick
and robust search facility to help their customers locate the information they
need to enjoy their craft.

 When first launched, Michaels.com employed a naïve approach to searching.
With all of the site’s content stored in a relational database, they used basic SQL
queries involving LIKE clauses. Because the content tables were very large and
contained lengthy columns, searching in this manner was very slow. Further-
more, complex searches involving multiple criteria were not possible.

 Realizing the limitations of searching by SQL, Michaels.com turned to a com-
mercial search solution. Although this tool offered an improved search facility
over SQL searching, it was still not ideal. Search results were often inconsistent,
omitting items that should have matched the search criteria. Rebuilding the
search index involved taking the search facility offline. And, to make matters
worse, documentation and technical support for the product came up lacking.

 After much frustration with the commercial product, Michaels.com
began seeking a replacement. The following criteria were set for finding a
suitable replacement:

■ Performance—Any search, no matter how complicated, must return results
quickly. Although quickly never was quantified, it was understood that web
surfers are impatient and that any search that took longer than a few sec-
onds would outlast the customer’s patience.

■ Scalability—The tool must scale well both in terms of the amount of data
indexed as well as with the site’s load during peak traffic.

■ Robustness—The index must be frequently rebuilt without taking the search
facility offline.

Following a brief evaluation period, Michaels.com chose Lucene to fulfill their
search requirements. What follows is a description of how Lucene drives
Michaels.com’s search facility.

10.6.1 Indexing content

Michaels.com has four types of searchable content: art prints, articles, in-store
products information, and projects.

 All searchable types are indexed in Lucene with a document containing at least
two fields: an ID field and a keywords field. Although Lucene is used for searching
on Michaels.com, a relational database contains the actual content. Therefore, the
ID field in each Lucene document contains the value of the primary key of the
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Artful searching at Michaels.com 363
content in the database. The keywords field contains one or more words that may
be searched upon.

 Art prints have special search requirements beyond simple keyword search-
ing. Michaels.com offers an Art Finder tool (figure 10.5) that enables an art print
customer to locate a suitable print based upon one or more of a print’s orienta-
tion (landscape, portrait, or square), subject, and dominant colors. As such, an
art print is indexed in Lucene with a document containing orientation, subject,
and color fields in addition to the ID and keywords fields.

Analyzing keyword text
One of the requirements placed upon Michaels.com’s search facility was the abil-
ity to match search terms against synonyms and common misspellings. For
example, the Xyron line of crafting products is very popular among scrapbook-
ers and other paper-crafting enthusiasts. Unfortunately, many visitors to

Figure 10.5 The Michaels.com Art Finder search tool
Licensed to Jason Ruesch <krhonos713@hotmail.com>

364 CHAPTER 10
Case studies
Michaels.com mistakenly spell Xyron as it sounds: Zyron. To enable those users to
find the information that they are looking for, Michaels.com’s search must be
forgiving of this spelling mistake.

 To accommodate this, the Michaels.com development team created a custom
Lucene analyzer called AliasAnalyzer. An AliasAnalyzer starts with an Alpha-
numericTokenizer (a subclass of org.apache.lucene.analysis.LetterTokenizer
that also accepts numeric digits in a token) to break the keyword string into indi-
vidual tokens. The token stream is then passed through a chain of filters, includ-
ing org.apache.lucene.analysis.LowerCaseFilter, org.apache.lucene.analysis.
StopFilter, and org.apache.lucene.analysis.PorterStemFilter. The last filter
applied to the token stream is a custom AliasFilter (listing 10.3) that looks up a
token’s aliases from a property file and introduces the aliases (if any) into the
token stream.

class AliasFilter extends TokenFilter {
 private final static MultiMap ALIAS_MAP = new MultiHashMap();
 private Stack currentTokenAliases = new Stack();

 static {
 ResourceBundle aliasBundle = ResourceBundle.getBundle("alias");
 Enumeration keys = aliasBundle.getKeys();

 while (keys.hasMoreElements()) {
 String key = (String)keys.nextElement();
 loadAlias(key, aliasBundle.getString(key));
 }
 }

 private static void loadAlias(String word, String aliases) {

 StringTokenizer tokenizer = new StringTokenizer(aliases);
 while(tokenizer.hasMoreTokens()) {
 String token = tokenizer.nextToken();
 ALIAS_MAP.put(word, token);
 ALIAS_MAP.put(token, word);
 }
 }

 AliasFilter(TokenStream stream) {
 super(stream);
 }

 public Token next() throws IOException {

 if (currentTokenAliases.size() > 0) {
 return (Token)currentTokenAliases.pop();
 }

Listing 10.3 AliasFilter introduces synonym tokens into the token stream

Load alias list from
properties file

Allow for bidirectional aliasing

Return next alias
as next token
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Artful searching at Michaels.com 365
 Token nextToken = input.next();

 if (nextToken == null) return null;

 Collection aliases =
 (Collection) ALIAS_MAP.get(nextToken.termText());

 pushAliases(aliases);

 return nextToken;
 }

 private void pushAliases(Collection aliases) {

 if (aliases == null) return;

 for (Iterator i = aliases.iterator(); i.hasNext();) {
 String token = (String) i.next();
 currentTokenAliases.push(new Token(token, 0, token.length()));
 }
 }
}

For example, if the keyword text is “The Zyron machine” and the following prop-
erties file is used, the resulting token stream would contain the following tokens:
zyron, xyron, device, and machine:

zyron=xyron
machine=device

Analyzing art print colors
Initially, each print’s dominant color was to be chosen manually by the produc-
tion staff. However, this plan was flawed in that analysis of colors by a human is
subjective and slow. Therefore, the Michaels.com team developed an analysis
tool to determine a print’s dominant colors automatically.

 To begin, a finite palette of colors was chosen to match each print against.
The palette size was kept small to avoid ambiguity of similar colors but was still
large enough to accommodate most decorators’ expectations. Ultimately a pal-
ette of 21 colors and 3 shades of grey were chosen (see table 10.6).

Table 10.6 The Michaels.com color palette for finding art prints

#000000 #CCCCCC #FFFFFF

#663300 #CC6600 #FFCC99

continued on next page

Look up aliases
for next token

Push aliases
onto stack

Return
next token

Load alias list from
properties file
Licensed to Jason Ruesch <krhonos713@hotmail.com>

366 CHAPTER 10
Case studies
The analysis tool processes JPEG images of each print. Each pixel in the image is
compared to each color in the color palette in an attempt to find the palette
color that most closely matches the pixel color. Each color in the palette has an
associated score that reflects the number of pixels in the image that matched to
that color.

 When matching a pixel’s color to the palette colors, a color distance formula
is applied. Consider the RGB (red/green/blue) components of a color being
mapped in Euclidean space. Finding the distance between two colors is simply a
matter of determining the distance between two points in Euclidean space using
the formula shown in figure 10.6.7

 After every pixel is evaluated against the color palette, the three colors with
the highest score are considered the dominant colors for the art print. Further-
more, if any of the colors accounts for less than 25% of the pixels in the print,
then that color is considered insignificant and is thrown out.

 Once the dominant colors have been chosen, their hexadecimal triples (such
as FFCC99) are stored in the relational database along with the print’s other

#006633 #666600 #CCCC66

#CCCC00 #FFCC33 #FFFFCC

#006699 #99CCFF #99CCCC

#330066 #663399 #6633CC

#993333 #CC6666 #FF9999

#FF3333 #FF6600 #FF99CC

7 Actually, the formula employed by Michaels.com is slightly more complicated than this. The human
eye is more sensitive to variations of some colors than others. Changes in the green component are
more noticeable than changes in the red component, which are more noticeable than changes in the
blue component. Therefore, the formula must be adjusted to account for the human factor of color.
The actual formula used by Michaels.com is a derivative of the formula explained at http://www.com-
puphase.com/cmetric.htm.

Table 10.6 The Michaels.com color palette for finding art prints (continued)

Figure 10.6 Color distance formula
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Artful searching at Michaels.com 367
information. The color analysis routine is a one-time routine applied when a
print is first added to the site and is not performed every time that a print is
indexed in Lucene.

Running the indexers
The search index is rebuilt from scratch once per hour. A background thread
awakens, creates a new empty index, and then proceeds to add content data to
the index. This is simply a matter of drawing a content item’s data from the rela-
tional database, constructing a Lucene document to contain that data, and then
adding it to the index.

 So that the search facility remains available during indexing, there are two
indexes: an active index and a working index. The active index is available for
searching by Michaels.com customers, whereas the working index is where
indexing occurs. Once the indexer is complete, the working and active directo-
ries are swapped so that the new index becomes the active index and the old
index waits to be rebuilt an hour later.

 To avoid multiple index files, Michaels.com recently began using the new
compound index format available in Lucene 1.3.

10.6.2 Searching content

Several HTML forms drive the search for Michaels.com. In the case of a simple
keywords search, the form contains a keywords field. In the case of an Art Finder
search, the form contains an HTML <select> named subject, a hidden field
(populated through JavaScript) named color, and a set of radio buttons named
orientation.

 When the search is submitted, each of these fields is placed into a java.util.
Map (where the parameter name is the key and the parameter value is the value)
and passed into the Lucene query constructor method shown in listing 10.4.

private static final String[] IGNORE_WORDS =
 new String[] { "and", "or" };

public static String constructLuceneQuery(Map fields) {
 StringBuffer queryBuffer = new StringBuffer();

 for(Iterator keys=fields.keySet().iterator(); keys.hasNext();) {
 String key = (String) keys.next();
 String field = (String) fields.get(key);

Listing 10.4 Constructing a Lucene query from a map of fields

Cycle over each
field in Map
Licensed to Jason Ruesch <krhonos713@hotmail.com>

368 CHAPTER 10
Case studies
 if(key.equals("keywords")) {
 String keywords =
 removeNonAlphaNumericCharacters(field).toLowerCase();

 StringTokenizer tokenizer = new StringTokenizer(keywords);

 while(tokenizer.hasMoreTokens()) {
 String nextToken = tokenizer.nextToken();
 if (Arrays.binarySearch(IGNORE_WORDS, nextToken) > 0) {
 continue;
 }
 if(!StringUtils.isEmpty(keywords)) {
 queryBuffer.append("+").append(nextToken).append(" ");
 }
 }
 }
 else {
 queryBuffer.append("+").append(key).append(":").
 append(field).append(" ");
 }
 }

 return queryBuffer.toString();
}

When dealing with keywords, care must be taken to ensure that no characters
with special meaning to Lucene are passed into the query. A call to the
removeNonAlphaNumericCharacters() utility method strips out all characters that
aren’t A-Z, 0-9, or spaces. The keywords field is also normalized to lowercase and
stripped of any words with special meaning to Lucene (in this case, and and or).

 At this point, the keywords string is clean and ready to be added to the search
query. If we wanted the query to be an inclusive query (including all documents
matching any of the keywords), we could just append the keywords string to the
query and be done. Instead, each word in the string is prepended with a plus
sign (+) indicating that matching documents must contain the word.8

 For example, given a search phrase of “Mother and child”, the resulting
Lucene query would be "+mother +child".

 In the case of the nonkeywords search fields, we simply append the name and
value of the field into the query, separated by a colon (:). For example, had the

8 Authors’ note: There are enough odd interactions between analyzers and QueryParser for us to add
a warning here. Building a query expression in code to be parsed by QueryParser may be quirky. An
alternative is to build a BooleanQuery with nested TermQuerys directly.

Strip nonalphanumeric
characters from keywords

Separate keywords
on space delimiter

If reserved
word, ignore

Add keyword
to query

Add nonkeyword field
and value to query
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Artful searching at Michaels.com 369
customer used Art Finder to locate a horizontal art print in any subject with dark
brown as its dominant color, the query would be "orientation:horizontal
color:663300".

 With the query constructed, we are now ready to perform the search.

Submitting the query
The findDocuments() method (listing 10.5) is responsible for querying a given
Lucene index and returning a list of documents that match that query.

private List findDocuments(String queryString,
 String indexDirectory) {

 IndexSearcher searcher = null;
 try {
 searcher = new IndexSearcher(indexDirectory);

 Query query = QueryParser.parse(
 queryString, "keywords", new SearchAnalyzer());

 Hits hits = searcher.search(query);

 List documentList = new ArrayList();

 for (int i = 0; i < hits.length()9; i++) {
 documentList.add(
 new BaseDocument(hits.doc(i), hits.score(i)));
 }
 return documentList;
 }
 catch(Exception e) {
 throw new SystemException("An search error occured");
 }
 finally {
 LuceneUtils.close(searcher);
 }
}

Listing 10.5 The findDocuments() method returns a list of matching documents

9 Authors’ note: Be aware of the potential number of hits, the size of your documents, and the scalability
needs of your application when you choose to iterate over all hits, especially if you collect them using
hits.doc(i) like this. As noted in this case study, the performance in this scenario has been more
than acceptable, but much larger indexes and arbitrary queries change the landscape dramatically.

Open IndexSearcher
on specified directory

Parse query

Do search
Licensed to Jason Ruesch <krhonos713@hotmail.com>

370 CHAPTER 10
Case studies
The BaseDocument class (listing 10.6) is simply a means to tie a Lucene Document
to its relevancy score. As eluded to by the getId() method, the only thing we care
about within a returned document is its ID. We’ll use this value to look up the
complete piece of data from the relational database.

public class BaseDocument {
 protected final Document document;
 protected final float score;

 BaseDocument(Document document, float score) {
 this.document = document;
 this.score = score;
 }

 public int getId() {
 return Integer.parseInt(document.get("id"));
 }

 String getFieldValue(String fieldName) {
 return document.get(fieldName);
 }
}

With the list of BaseDocuments returned from findDocuments(), we’re ready to
pare down the results into a page’s worth of data:

List documentList = findDocuments(query, indexPath);
List subList = documentList.subList(start,
 Math.min(start + count, documentList.size()));

The start variable indicates the first document for the current page, whereas
the count variable indicates how many items are on the current page.

 Using the ID of each document in subList as a primary key, the last step is to
retrieve additional data about each document from the relational database.

10.6.3 Search statistics

At the time this was written (March 2004), Michaels.com boasted 23,090 art
prints, 3,327 projects, 385 in-store product promotions, and 191 crafting arti-
cles—all searchable through Lucene.

 During the 2003 holiday shopping period, typically a time of peak traffic for
Michaels.com, the search facility was engaged approximately 60,000 times per
day. Without fail, Lucene returned results in subsecond time for each request.

Listing 10.6 BaseDocument associates a Document and its score
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 371
10.6.4 Summary

Michaels.com has had tremendous success in employing Lucene to drive its search
facility, enabling customers to find the art and craft information and products that
they are looking for. Using its simple and intuitive API, we were able to integrate
Lucene into our site’s codebase quickly. Unlike its predecessors, Lucene has
proven to be stable, robust, and very quick. Furthermore, it runs virtually hands-
free, not requiring any developer intervention in well over a year and a half.

10.7 I love Lucene: TheServerSide

Contributed by Dion Almaer

“TheServerSide.com is an online community for enterprise Java architects and
developers, providing daily news, tech talk interviews with key industry figures,
design patterns, discussion forums, satire, tutorials, and more.”

—http://www.theserverside.com

TheServerSide historically had a poor search engine. Thanks to Jakarta Lucene,
we could fix the problem with a high quality open source solution. This case
study discusses how TheServerSide implemented Lucene as its underlying
search technology.

10.7.1 Building better search capability

There are a lot of areas on TheServerSide that we would like to change. Trust us.
Ever since I joined TheServerSide I have cringed at our search engine implementa-
tion. It didn’t do a good job, and that meant that our users couldn’t get to informa-
tion that they wanted. User interface analysis has shown that search functionality
is very important on the web (see http://www.useit.com/alertbox/20010513.html),
so we really had to clean up our act here. This case study discusses how TheServer-
Side built an infrastructure that allows us to index and search our different content
using Lucene. We will chat about our high-level infrastructure, how we index and
search, as well as how we are easily able to tweak the configuration.

 So, we wanted a good search engine, but what are the choices? We were using
ht://Dig and having it crawl our site, building the index as it went along.10 This

10 For more on ht://Dig, visit http://www.htdig.org/.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

372 CHAPTER 10
Case studies
process wasn’t picking up all of the content and didn’t give us a nice clean API for
us to tune the search results. It did do one thing well, and that was searching
through our news. This was a side effect of having news on the home page, which
helps the rankings (the more clicks ht://Dig needed to navigate from the home
page, the lower the rankings).

 Although ht://Dig wasn’t going a great job, we could have tried to help it on
its way. For example, we could have created a special HTML file that linked to
various areas of the site and used that as the root page for it to crawl. Maybe we
could have put a servlet filter that checked for the ht://Dig user agent and
returned back content in a different manner (cleaning up the HTML and such).

 We looked into using Google to manage our searching for us. I mean, they
are pretty good at searching, aren’t they?! Although I am sure we could have had
a good search using them, we ran into a couple of issues:

■ It wasn’t that easy for us (a small company) to get much information from
them.

■ For the type of search that we needed, it was looking very expensive.
■ We still have the issues of a crawler-based infrastructure.

While we were looking into Google, I was also looking at Lucene. Lucene has
always interested me, because it isn’t a typical open-source project. In my experi-
ence, most open-source projects are frameworks that have evolved. Take some-
thing like Struts. Before Struts, many people were rolling their own MVC layers
on top of Servlets/JSPs. It made sense to not have to reinvent this wheel, so Struts
came around.

 Lucene is a different beast. It contains some really complicated low-level
work, not just a nicely designed framework. I was really impressed that some-
thing of this quality was just put out there!

 At first I was a bit disappointed with Lucene because I didn’t really under-
stand what it was O. Immediately I was looking for crawler functionality that
would allow me to build an index just like ht://Dig was doing. At the time, LARM
was in the Lucene Sandbox (and I have since heard of various other subprojects),
but I found it strange that this wouldn’t be built into the main distribution. It
took me a day to realize that Lucene isn’t a product that you just run. It is a top-
notch search API that you can use to plug in to your system. Yes, you may have to
write some code, but you also get great power and flexibility.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 373
10.7.2 High-level infrastructure

When you look at building your search solution, you often find that the process is
split into two main tasks: building an index, and searching that index. This is defi-
nitely the case with Lucene (and the only time when this isn’t the case is if your
search goes directly to the database).

 We wanted to keep the search interface fairly simple, so the code that inter-
acts from the system sees two main interfaces: IndexBuilder, and IndexSearch.

IndexBuilder
Any process that needs to build an index goes through
the IndexBuilder (figure 10.7). This is a simple inter-
face that provides two entry points to the indexing pro-
cess. To do an incremental build and control how often
to optimize the Lucene index as you add records, pass
individual configuration settings to the class. To control
the settings from an external configuration file, use a
plan name. You will also see a main(..) method. We cre-
ated this to allow for a command-line program to kick
off a build process.

IndexSources
The IndexBuilder abstracts the details of Lucene, and the IndexSources that are
used to create the index itself. As we will see in the next section, TheServerSide
has various content that we wanted to be able to index, so a simple design is used
where we can plug ‘n play new index sources.

IndexSearch
The search interface is also kept very simple (see fig-
ure 10.8). A search is done via

IndexSearch11.search(String inputQuery, int
resultsStart,

 int resultsCount);

For example, we look for the terms EJB and WebLogic,
returning up to the first 10 results:

IndexSearch.search("EJB AND WebLogic", 0, 10);

11 Authors’ note: Be careful not to confuse TheServerSide’s IndexSearch class with Lucene’s Index-
Searcher class.

Figure 10.7
IndexBuilder

Figure 10.8 IndexSearch
Licensed to Jason Ruesch <krhonos713@hotmail.com>

374 CHAPTER 10
Case studies
The query is built via the Lucene QueryParser (actually a subclass that we created,
which you will see in detail later). This allows our users to input typical Google-
esque queries. Once again, a main() method exists to allow for command-line
searching of indexes.

10.7.3 Building the index

We have seen that the external interface to building our search index is the class
IndexBuilder. Now we will discuss the index building process and the design
choices that we made.

What fields should make up our index?
We wanted to create a fairly generic set of fields that our index would contain.
We ended up with the fields shown in table 10.7.

We created a simple Java representation of this data, SearchContentHolder, which
our API uses to pass this information around. It contains the modified and cre-
ated dates as java.util.Date, and the full contents are stored as a StringBuffer

Table 10.7 TheServerSide index field structure

Field Lucene Type Description

title Field.Text A short title of the content.

summary Field.Text A summary paragraph introducing the content.

fullcontents Field.UnStored The entire contents to index, but not store.

owner Field.Keyword The owner of the content (who wrote the post? who was the
author of the article?).

category Field.Keyword The type of this content (is it a news item? an article?).

path Field.Keyword The unique path that points to this resource.

modifieddate Field.Keyword The modified date in Lucene format. Used for displaying the
exact date of the content to the user.

createddate Field.Keyword The created date in Lucene format. Used for displaying the
exact date of the content to the user.

modifieddate_range Field.Keyword Date as a String with the format YYYYMMDD. Used for
date-range queries.

createddate_range Field.Keyword Date as a String with the format YYYYMMDD. Used for
date-range queries.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 375
rather than a String. This was refactored into our design because we found that
some IndexSources contained a lot of data, and we didn’t want to add to Strings.

What types of indexing?
Since the TSS content that we wanted to index is fairly large and a lot of it doesn’t
change, we wanted to have the concept of incremental indexing as well as a full
indexing from scratch. To take care of this, we have an incrementalDays variable
that is configured for the index process. If this value is set to 0 or less, then do a
full index. If this is not the case, then content that is newer (created / modified)
than today – incrementalDays should be indexed. In this case, instead of creating
a new index, we simply delete the record (if it already exists) and insert the latest
data into it.

 How do you delete a record in Lucene again? We need the org.apache.lucene.
index.IndexReader. The snippet that does the work is shown in listing 10.7.

IndexReader reader = null;
try {
 this.close(); // closes the underlying index writer

 reader = IndexReader.open(SearchConfig.getIndexLocation());
 Term term = new Term("path", theHolder.getPath());
 reader.delete(term);
} catch (IOException e) {
 ... deal with exception ...
} finally {
 try { reader.close(); } catch (IOException e) { /* suck it up */ }
}

this.open(); // reopen the index writer

As you can see, we first close the IndexWriter, and then we open the index via the
IndexReader. The path field is the ID that corresponds to this “to be indexed”
entry. If it exists in the index, it will be deleted, and shortly after we will re-add
the new index information.

What to index?
As TheServerSide has grown over time, we have the side effect of possessing con-
tent that lives in different sources. Our threaded discussions lie in the database,

Listing 10.7 Snippet from IndexHolder that deletes the entry from the index if it is
already there
Licensed to Jason Ruesch <krhonos713@hotmail.com>

376 CHAPTER 10
Case studies
but our articles live in a file system. The Hard Core Tech Talks also sit on the file
system but in a different manner than our articles.

 We wanted to be able to plug in different sources to the index, so we created a
simple IndexSource interface and a corresponding Factory class which returns
all of the index sources to be indexed. The following code shows the simple
IndexSource interface:

public interface IndexSource {
 public void addDocuments(IndexHolder holder);
}

There is just one method, addDocuments(), which an IndexSource has to imple-
ment. The IndexBuilder is charged with calling this method on each Index-
Source and passing in an IndexHolder. The responsibility of the IndexHolder is in
wrapping around the Lucene-specific search index (via Lucene’s org.apache.
lucene.index.IndexWriter). The IndexSource is responsible for taking this
holder and adding records to it in the index process.

 Let’s look at an example of how an IndexSource does this by looking at the
ThreadIndexSource.

ThreadIndexSource
This index source goes through the TSS database and indexes the various
threads from all of our forums.12 If we are doing an incremental build, then the
results are simply limited by the SQL query that we issue to get the content.

 When we get the data back from the database, we need to morph it into an
instance of SearchContentHolder. If we don’t have a summary, then we simply
crop the body to a summary length governed by the configuration.

 The main field that we search is fullcontents. To make sure that a user of the
system finds what it wants, we make this field not only the body of a thread mes-
sage, but rather a concatenation of the title of the message, the owner of the
message, and then finally the message contents itself. You could try to use bool-
ean queries to make sure that a search finds a good match, but we found it a lot
simpler to put in a cheeky concatenation!13

 So, this should show how simple it is to create an IndexSource. We created
sources for articles and tech talks (and in fact a couple of versions to handle an

12 Authors’ note: To clarify, the word thread here refers to a series of forum postings with a common subject.
13 Authors’ note: For more on querying multiple fields and this concatenation technique, see section 5.3.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 377
upgrade in content management facilities). If someone wants us to search a new
source, we create a new adapter, and we are in business.

How to tweak the ranking of records
When we hand the IndexHolder a SearchContentHolder, it does the work of add-
ing it to the Lucene index. This is a fairly trivial task of taking the values from
the object and adding them to a Lucene document:

doc.add(Field.UnStored("fullcontents", theHolder.getFullContents()));
doc.add(Field.Keyword("owner", theHolder.getOwner()));

There is one piece of logic that goes above and beyond munging the data to a
Lucene-friendly manner. It is in this class that we calculate any boosts that we
want to place on fields or the document itself. It turns out that we end up with
the boosters shown in table 10.8.

The date boost has been really important for us. We have data that goes back for a long
time and seemed to be returning old reports too often. The date-based booster
trick has gotten around this, allowing for the newest content to bubble up.

 The end result is that we now have a nice simple design that allows us to add
new sources to our index with minimal development time!

10.7.4 Searching the index

Now we have an index. It is built from the various sources of information that we
have and is just waiting for someone to search it.

 Lucene made this very simple for us to whip up. The innards of searching are
hidden behind the IndexSearch class, as mentioned in the high-level overview.
The work is so simple that I can even paste it here:

Table 10.8 TheServerSide field boosts

Boost Description

Title A title should have more weight than something in the body of a message, so bump up
this field booster.

Summary A summary should also have more weight than the message body (although not as much
as a title), so do the same here.

Category Some categories are born more important than others. For example, we weight front-page
threads and articles higher than the discussion forums.

Date boosts Newer information is better, isn’t it? We boost a document if it is new, and the boost
decreases as time goes on.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

378 CHAPTER 10
Case studies
public static SearchResults search(String inputQuery,
 int resultsStart,
 int resultsCount) throws SearchException {
 try {
 Searcher searcher = new
 IndexSearcher(SearchConfig.getIndexLocation());
 String[] fields = { "title", "fullcontents" };

 Hits hits = searcher.search(
 CustomQueryParser.parse(inputQuery, fields,
 new StandardAnalyzer()));

 SearchResults sr = new SearchResults(hits, resultsStart,
 resultsCount);
 searcher.close();
 return sr;
 } catch (...) {
 throw new SearchException(e);
 }
}

This method simply wraps around the Lucene IndexSearcher and in turn enve-
lopes the results as our own SearchResults.

 The only slightly different item to note is that we created out own simple Query-
Parser variant. The CustomQueryParser extends Lucene’s and is built to allow a
default search query to search both the title and fullcontents fields. It also dis-
ables the useful, yet expensive, wildcard and fuzzy queries. The last thing we want
is for someone to do a bunch of queries such as 'a*', causing a lot of work in the
Lucene engine. Our custom query parser is shown in listing 10.8.14

public class CustomQueryParser extends QueryParser
{
 /**
 * Static parse method which will query both the title and
 * the fullcontents fields via a BooleanQuery
 */
 public static Query parse(String query, String[] fields,
 Analyzer analyzer) throws ParseException {
 BooleanQuery bQuery = new BooleanQuery();

 for (int i = 0; i < fields.length; i++) {
 QueryParser parser = new CustomQueryParser(fields[i],
 analyzer);

Listing 10.8 TheServerSide’s custom query parser

14 Authors’ note: Refer to section 6.3.2 for an almost identical custom query parser and further discus-
sion of subclassing QueryParser.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 379
 Query q = parser.parse(query);
 bQuery.add(q, false, false);
 }

 return bQuery;
 }

 public CustomQueryParser(String field, Analyzer analyzer) {
 super(field, analyzer);
 }

 final protected Query getWildcardQuery(String field, String term)
 throws ParseException {
 throw new ParseException("Wildcard Query not allowed.");
 }

 final protected Query getFuzzyQuery(String field, String term)
 throws ParseException {
 throw new ParseException("Fuzzy Query not allowed.");
 }
}

That’s all, folks. As you can see, it is fairly trivial to get the ball rolling on the
search side of the equation.

10.7.5 Configuration: one place to rule them all

There have been settings in both the indexing process and search process that
were crying out for abstraction. Where should we put the index location, the cat-
egory lists, and the boost values, and register the index sources? We didn’t want
to have this in code, and since the configuration was hierarchical, we resorted to
using XML.

 Now, I don’t know about you, but I am not a huge fan of the low-level APIs
such as SAX and DOM (or even JDOM, DOM4j, and the like). In cases like this, we
don’t care about parsing at this level. I really just want my configuration informa-
tion, and it would be perfect to have this information given to me as an object
model. This is where tools such as Castor-XML, JIBX, JAXB, and Jakarta Com-
mons Digester come in.

 We opted for the Jakarta Digester in this case. We created the object model
to hold the configuration that we needed, all behind the SearchConfig façade.
This façade holds a Singleton object that held the configuration, as shown in
listing 10.9.

Combine queries,
neither requiring nor
prohibiting matches
Licensed to Jason Ruesch <krhonos713@hotmail.com>

380 CHAPTER 10
Case studies
/**
 * Wrap around a Singleton instance which holds a ConfigHolder
 * @return
 */
public synchronized static ConfigHolder getConfig() {
 if (ourConfig == null) {
 try {
 String configName = "/search-config.xml";
 File input = new File(PortalConfig.getSearchConfig() +
 configName);
 File rules = new File(PortalConfig.getSearchConfig() +
 "/digester-rules.xml");

 Digester digester = DigesterLoader.createDigester(
 rules.toURL());

 ourConfig = (ConfigHolder) digester.parse(input);
 } catch(...) {
 // ...
 }
 }

 return ourConfig;
}

This method tells the tale of Digester. It takes the XML configuration file (search-
config.xml) and the rules for building the object model (digester-rules.xml) and
throws them in a pot together, and you end up with the object model (ourConfig).

XML configuration file
The config file drives the index process and aids the search system. To register a
particular index source, simply add an entry under the <index-source> element.
Listing 10.10 shows an example of our configuration.

<search-config>
 <!-- The path to where the search index is kept -->
 <index-location windows="/temp/tss-searchindex"
 unix="/tss/searchindex" />

 <!-- Starting year of content which is indexed -->
 <beginning-year>2000</beginning-year>

 <!-- Information on search results -->
 <search-results results-per-page="10" />

Listing 10.9 Abstracting indexing and search configuration

Listing 10.10 Sample search-config.xml file
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 381
 <!-- Index Plan Configuration -->
 <index-plan name="production-build">
 <optimize-frequency>400</optimize-frequency>
 </index-plan>

 <index-plan name="test-build">
 <optimize-frequency>0</optimize-frequency>
 </index-plan>

 <index-plan name="daily-incremental">
 <incremental-build>1</incremental-build>
 <optimize-frequency>0</optimize-frequency>
 </index-plan>

 <!-- Category Config Mapping -->
 <categories>
 <category number="1" name="news" boost="1.3" />
 <category number="2" name="discussions" boost="0.6" />
 <category number="3" name="patterns" boost="1.1" />
 <category number="4" name="reviews" boost="1.08"/>
 <category number="5" name="articles" boost="1.1" />
 <category number="6" name="talks" boost="1.0" />
 </categories>

 <!-- Boost Value Configuration -->
 <boost date-base-amount="1.0" date-boost-per-count="0.02"
 title="2.0" summary="1.4" />

 <!-- List all of the Index Sources -->
 <index-sources>
 <thread-index-source summary-length="300"
 class-name="com.portal.util.search.ThreadIndexSource">
 <excluded-forums>
 <forum>X</forum>
 </excluded-forums>
 </thread-index-source>

 <article-index-source
 class-name="com.portal.util.search.ArticleIndexSource"
 directory="web/tssdotcom/articles"
 category-name="articles"
 path-prefix="/articles/article.jsp?l="
 default-creation-date="today"
 default-modified-date="today" />

 </index-sources>

</search-config>

If you peruse the file, you see that now we can tweak the way that the index is
built via elements such as <boost>, the <categories>, and information in
Licensed to Jason Ruesch <krhonos713@hotmail.com>

382 CHAPTER 10
Case studies
<index-sources>. This flexibility allowed us to play with various boost settings
until they felt right.

Digester Rules file
How does the Digester take the search-config.xml and know how to build the
object model for us? This magic is done with a Digester Rules file. Here we tell
the Digester what to do when it comes across a given tag.

 Normally you will tell the engine to do something like this:

1 Create a new object IndexPlan when you find an <index-plan>.

2 Take the attribute values, and call set methods on the corresponding
object (category.setNumber(...), category.setName(...), and so on).

Listing 10.11 shows a snippet of the rules that we employ.

<?xml version="1.0"?>

<digester-rules>
 <!-- Top Level ConfigHolder Object -->
 <pattern value="search-config">
 <object-create-rule
 classname="com.portal.util.search.config.ConfigHolder" />
 <set-properties-rule/>
 </pattern>

 <!-- Search Results -->
 <pattern value="search-config/search-results">
 <set-properties-rule>
 <alias attr-name="results-per-page"
 prop-name="resultsPerPage" />
 </set-properties-rule>
 </pattern>

 <!-- Index Plan -->
 <pattern value="search-config/index-plan">
 <object-create-rule
 classname="com.portal.util.search.config.IndexPlan" />
 <bean-property-setter-rule pattern="incremental-build"
 propertyname="incrementalBuild" />
 <bean-property-setter-rule pattern="optimize-frequency"
 propertyname="optimizeFrequency" />
 <set-properties-rule/>
 <set-next-rule methodname="addIndexPlan" />
 </pattern>

... more rules here ...

</digester-rules>

Listing 10.11 A snippet of the digester-rules.xml
Licensed to Jason Ruesch <krhonos713@hotmail.com>

I love Lucene: TheServerSide 383
All of the rules for the Digester are out of scope of this case study, but you can
probably guess a lot from this snippet. For more information, visit http://
jakarta.apache.org/commons/digester.15

 So, thanks to another open-source tool, we were able to create a fairly simple
yet powerful set of configuration rules for our particular search needs. We didn’t
have to use an XML configuration route, but it allows us to be flexible. If we were
really good people, we would have refactored the system to allow for program-
matic configuration. To do that nicely would be fairly trivial. We would have a
configuration interface and use Dependency Injection (IoC) to allow the code to
setup any implementation (one being the XML file builder, the other coming
from manual coding).

10.7.6 Web tier: TheSeeeeeeeeeeeerverSide?

At this point we have a nice clean interface into building an index and searching
on one. Since we need users to search the content via a web interface, the last item
on the development list was to create the web layer hook into the search interface.

 TheServerSide portal infrastructure uses a home-grown MVC web tier. It is
home grown purely because it was developed before the likes of Struts, WebWork,
or Tapestry. Our system has the notion of actions (or, as we call them, assemblers),
so to create the web glue we had to

■ Create a web action: SearchAssembler.java
■ Create a web view: The search page and results

SearchAssembler web action
The web tier action is responsible for taking the input from the user, passing
through to IndexSearch.search(...), and packaging the results in a format
ready for the view. There isn’t anything at all interesting in this code. We take the
search query input for the user and build the Lucene query, ready for the search
infrastructure. What do I mean by “build the query”? Simply put, we add all of
the query information given by the user into one Lucene query string.

 For example, if the user typed Lucene in the search box, selected a date
“after Jan 1 2003”, and narrowed the search categories to “news”, we would end
up building

Lucene AND category:news AND modifieddate_range:[20040101 TO 20100101]

So our code contains small snippets such as

15 Authors’ note: Digester is also used for indexing XML documents in section 7.2.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

384 CHAPTER 10
Case studies
if (dateRangeType.equals("before")) {
 querySB.append(
 " AND modifieddate_range:[19900101 TO " + dateRange + "]");
} else if (dateRangeType.equals("after")) {
 querySB.append(
 " AND modifieddate_range:[" + dateRange + " TO 2010010116]");
}

Search view
The view technology that we use is JSP (again, for legacy reasons). We use our
MVC to make sure that Java code is kept out of the JSPs themselves. So, what we
see in this code is basically just HTML with a couple of JSP tags here and there.

 The one piece of real logic is when there are multiple results (see figure 10.9).
Here we have to do some math to show the result pages, what page you are on,
and so on. This should look familiar to pagination in Google and the like. The
only difference is that we always show the first page, because we have found that
most of the time, page 1 is really what you want. This is where we could have
really copied Google and placed TheSeeeeeeeeeerverside along the pages.

 The web tier is clean and kept as thin as possible. We leverage the work done
in the IndexBuild and IndexSearch high-level interfaces to Lucene.

10.7.7 Summary

You have seen all of the parts and pieces of TheServerSide search subsystem. We
leveraged the power of Lucene, yet expose an abstracted search view. If we had
to support another search system, then we could plug that in behind the scenes,
and the users of the search packages wouldn’t be affected.

 Having said that, we don’t see any reason to move away from Lucene. It has
been a pleasure to work with and is one of the best pieces of open source software
that I have personally ever worked with.

 TheServerSide search used be a weak link on the site. Now it is a powerhouse.
I am constantly using it as Editor, and now I manage to find exactly what I want.

 Indexing our data is so fast that we don’t even need to run the incremental
build plan that we developed. At one point we mistakenly had an Index-
Writer.optimize() call every time we added a document. When we relaxed that
to run less frequently, we brought down the index time to a matter of seconds. It
used to take a lot longer, even as long as 45 minutes.17

16 Authors’ note: Oh great, so we have a Y2010 issue on TSS. Dion probably thinks he won’t be working
there by then and someone else will have the pleasure of tracking down why searches don’t work on
January 2, 2010! O
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Conclusion 385
 So to recap: We have gained relevance, speed, and power with this approach.
We can tweak the way we index and search our content with little effort.

 Thanks so much to the entire Lucene team.

10.8 Conclusion

It’s us, Otis and Erik, back again. We personally have enjoyed reading these case
studies. The techniques, tricks, and experiences provided by these case studies
have factored back into our own knowledge and implicitly appear throughout
this book. We left, for the most part, the original case study contributions intact as
they were provided to us. This section gives us a chance to add our perspective.

 Nutch, co-developed by Lucene’s own creator Doug Cutting, is a phenomenal
architecture designed for large server-farm scalability. Lucene itself has benefited

17 Authors’ note: Index optimization is covered in section 2.8.

Figure 10.9 TheSeeeeeeeeeeverSide
Licensed to Jason Ruesch <krhonos713@hotmail.com>

386 CHAPTER 10
Case studies
from Doug’s Nutch efforts. The Nutch analyzer is a clever alternative to avoid
precision loss due to stop-word removal but keeping search speeds maximized.

 The jGuru site search provides top-quality search results for Java terms.
Lucene’s own FAQ lives at jGuru. Give the site a try next time you have a Java-
related question. It’s often better than Google queries because of its domain-
specific nature.

 SearchBlox gives Lucene something it lacks: a user interface and manageabil-
ity. Lucene itself is a low-level API that must be incorporated into applications by
developers. Many times, folks are misled by Lucene’s description and expect it to
include the types of features SearchBlox provides.

 LingPipe and orthographic variation—wow! We feel like we’ve just walked
into the middle of a PhD-level linguistic analysis course. Bob Carpenter is a leg-
endary figure in this space and a renowned author.

 Michaels.com and TheServerSide show us that using Lucene doesn’t require
complex code, and being clever in how Lucene is incorporated yields nifty
effects. Indexing hexadecimal RGB values and providing external indexing and
searching configuration are two such examples of straightforward and demon-
strably useful techniques.

 We would again like to thank the contributors of these case studies for their
time and their willingness to share what they’ve done for your benefit.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Installing Lucene
387

Licensed to Jason Ruesch <krhonos713@hotmail.com>

388 APPENDIX A
Installing Lucene
The Java version of Lucene is just another JAR file. Using Lucene’s API in your
code requires only this single JAR file on your build and runtime classpath. This
appendix provides the specifics of where to obtain Lucene, how to work with the
distribution contents, and how to build Lucene directly from its source code. If
you’re using a port of Lucene in a language other than Java, refer to chapter 9
and the documentation provided with the port. This appendix covers the Java
version only.

A.1 Binary installation

To obtain the binary distribution of Lucene, follow these steps:

1 Download the latest binary Lucene release from the download area of the
Jakarta web site: http://jakarta.apache.org. At the time of this writing, the
latest version is 1.4.2; the subsequent steps assume this version. Down-
load either the .zip or .tar.gz file, whichever format is most convenient
for your environment.

2 Extract the binary file to the directory of your choice on your file system.
The archive contains a top-level directory named lucene-1.4.2, so it’s safe
to extract to c:\ on Windows or your home directory on UNIX. On Windows,
if you have WinZip handy, use it to open the .zip file and extract its contents
to c:\. If you’re on UNIX or using cygwin on Windows, unzip and untar (tar
zxvf lucene-1.4.2.tar.gz) the .tar.gz file in your home directory.

3 Under the created lucene-1.4.2 directory, you’ll find lucene-1.4.2.jar.
This is the only file required to introduce Lucene into your applications.
How you incorporate Lucene’s JAR file into your application depends on
your environment; there are numerous options. We recommend using
Ant to build your application’s code. Be sure your code is compiled
against the Lucene JAR using the classpath options of the <javac> task.

4 Include Lucene’s JAR file in your application’s distribution appropriately.
For example, a web application using Lucene would include lucene-
1.4.2.jar in the WEB-INF/lib directory. For command-line applications, be
sure Lucene is on the classpath when launching the JVM.

The binary distribution includes a substantial amount of documentation, includ-
ing Javadocs. The root of the documentation is docs/index.html, which you can
open in a web browser. Lucene’s distribution also ships two demonstration appli-
cations. We apologize in advance for the crude state of these demos—they lack
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Running the command-line demo 389
polish when it comes to ease of use—but the documentation (found in docs/
demo.html) describes how to use them step by step; we also cover the basics of
running them here.

A.2 Running the command-line demo

The command-line Lucene demo consists of two command-line programs: one
that indexes a directory tree of files and another that provides a simple search
interface. To run this demo, set your current working directory to the directory
where the binary distribution was expanded. Next, run the IndexFiles program
like this:

java -cp lucene-1.4.2.jar;lucene-demos-1.4.2.jar
➾ org.apache.lucene.demo.IndexFiles docs

.

.

.
adding docs/queryparsersyntax.html
adding docs/resources.html
adding docs/systemproperties.html
adding docs/whoweare.html
9454 total milliseconds

This command indexes the entire docs directory tree (339 files in our case) into
an index stored in the index subdirectory of the location where you executed
the command.

NOTE Literally every file in the docs directory tree is indexed, including .gif
and .jpg files. None of the files are parsed; instead, each file is indexed
by streaming its bytes into StandardAnalyzer.

To search the index just created, execute SearchFiles in this manner:

java -cp lucene-1.4.2.jar;lucene-demos-1.4.2.jar
 org.apache.lucene.demo.SearchFiles

Query: IndexSearcher AND QueryParser
Searching for: +indexsearcher +queryparser
10 total matching documents
0. docs/api/index-all.html
1. docs/api/allclasses-frame.html
2. docs/api/allclasses-noframe.html
3. docs/api/org/apache/lucene/search/class-use/Query.html
4. docs/api/overview-summary.html
5. docs/api/overview-tree.html
6. docs/demo2.html
Licensed to Jason Ruesch <krhonos713@hotmail.com>

390 APPENDIX A
Installing Lucene
7. docs/demo4.html
8. docs/api/org/apache/lucene/search/package-summary.html
9. docs/api/org/apache/lucene/search/package-tree.html

SearchFiles prompts interactively with Query:. QueryParser is used with Standard-
Analyzer to create a Query. A maximum of 10 hits are shown at a time; if there are
more, you can page through them. Press Ctrl-C to exit the program.

A.3 Running the web application demo

The web demo is slightly involved to set up and run properly. You need a web
container; our instructions are for Tomcat 5. The docs/demo.html documenta-
tion provides detailed instructions for setting up and running the web applica-
tion, but you can also follow the steps provided here.

 The index used by the web application differs slightly from that in the com-
mand-line demo. First, it restricts itself to indexing only .html, .htm, and .txt
files. Each file it processes (including .txt files) is parsed using a custom rudi-
mentary HTML parser. To build the index initially, execute IndexHTML:

java -cp lucene-1.4.2.jar;lucene-demos-1.4.2.jar
 org.apache.lucene.demo.IndexHTML -create -index webindex docs

.
.
.
adding docs/resources.html
adding docs/systemproperties.html
adding docs/whoweare.html
Optimizing index...
7220 total milliseconds

The -index webindex switch sets the location of the index directory. In a moment,
you’ll need the full path to this directory to configure the web application. The
final docs argument to IndexHTML is the directory tree to index. The –create
switch creates an index from scratch. Remove this switch to update the index with
files that have been added or changed since the last time the index was built.

 Next, deploy luceneweb.war (from the root directory of the extracted distri-
bution) into CATALINA_HOME/webapps. Start Tomcat, wait for the container to
complete the startup routine, and then edit CATALINA_HOME/webapps/lucene-
web/configuration.jsp using a text editor (Tomcat should have expanded the .war
file into a luceneweb directory automatically). Change the value of indexLocation
appropriately, as in this example, specifying the absolute path to the index you
built with IndexHTML:
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Building from source 391
String indexLocation =
 "/dev/LuceneInAction/install/lucene-1.4.2/webindex";

Now you’re ready to try the web application. Visit http://localhost:8080/lucene-
web in your web browser, and you should see “Welcome to the Lucene Template
application…” (you can also change the header and footer text in configura-
tion.jsp). If all is well with your configuration, searching for Lucene-specific
words such as "QueryParser AND Analyzer" should list valid results based on
Lucene’s documentation.

 You may try to click on one of the search results links and receive an error.
IndexHTML indexes a url field, which in this case is a relative path of docs/…. To
make the result links work properly, copy the docs directory from the Lucene dis-
tribution to CATALINA_HOME/webapps/luceneweb.

 Yes, these steps are a bit more manual than they should be. Rest assured that
improvements to Lucene’s example applications are on our to-do list as soon as
we’re finished writing this book!

TIP Cool hand Luke. Now that you’ve built two indexes, one for the command-
line demo and the other for the web application demo, it’s a perfect time
to try Luke. See section 8.2 for details on using Luke. Point it at the index,
and surf around a bit to get a feel for Luke and the contents of the index.

A.4 Building from source

Lucene’s source code is freely and easily available from Apache Jakarta’s CVS
repository. The prerequisites to obtain and build Lucene from source are CVS cli-
ent, Java Developer Kit (JDK), and Apache Ant. Follow these steps to build Lucene:

1 Check out the source code from Apache’s CVS repository. Follow the
instructions at the Jakarta web site (http://jakarta.apache.org) to access the
repository using anonymous read-only access. This boils down to execut-
ing the following commands (from cygwin on Windows, or a UNIX shell):

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
password: anoncvs

cvs –d :pserver:anoncvs@cvs.apache.org:/home/cvspublic
 checkout jakarta-lucene

2 Build Lucene with Ant. At the command prompt, set your current working
directory to the directory where you checked out the Lucene CVS reposi-
tory (C:\apache\jakarta-lucene, for example). Type ant at the command
Licensed to Jason Ruesch <krhonos713@hotmail.com>

392 APPENDIX A
Installing Lucene
line. Lucene’s JAR will be compiled to the build subdirectory. The JAR
filename is lucene-<version>.jar, where <version> depends on the cur-
rent state of the code you obtained.

3 Run the unit tests. If the Ant build succeeds, next run ant test (add JUnit’s
JAR to ANT_HOME/lib if it isn’t already there) and ensure that all of
Lucene’s unit tests pass.

Lucene uses JavaCC grammars for StandardTokenizer, QueryParser, and the
demo HTMLParser. The already-compiled .java version of the .jj files exists in the
CVS source code, so JavaCC isn’t needed for compilation. However, if you wish to
modify the parser grammars, you need JavaCC; you must also run the ant javacc
target. You can find more details in the BUILD.txt file in the root directory of
Lucene’s CVS repository.

A.5 Troubleshooting

We’d rather not try to guess what kinds of issues you may run into as you follow
the steps to install Lucene, build Lucene, or run the demos. Checking the FAQ,
searching the archives of the lucene-user e-mail list, and using Lucene’s issue-
tracking system are good first steps when you have questions or issues. You’ll find
details at the Lucene web site: http://jakarta.apache.org/lucene.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene
index format
393

Licensed to Jason Ruesch <krhonos713@hotmail.com>

394 APPENDIX B
Lucene index format
So far, we have treated the Lucene index more or less as a black box and have con-
cerned ourselves only with its logical view. Although you don’t need to under-
stand index structure details in order to use Lucene, you may be curious about the
“magic.” Lucene’s index structure is a case study in itself of highly efficient data
structures and clever arrangement to maximize performance and minimize
resource usage. You may see it as a purely technical achievement, or you can view
it as a masterful work of art. There is something innately beautiful about repre-
senting rich structure in the most efficient manner possible. (Consider the infor-
mation represented by fractal formulas or DNA as nature’s proof.)

 In this appendix, we’ll look at the logical view of a Lucene index, where we’ve
fed documents into Lucene and retrieved them during searches. Then, we’ll
expose the inner structure of Lucene’s inverted index.

B.1 Logical index view

Let’s first take a step back and start with a quick review of what you already know
about Lucene’s index. Consider figure B.1. From the perspective of a software
developer using Lucene API, an index can be considered a black box represented
by the abstract Directory class. When indexing, you create instances of the
Lucene Document class and populate it with Fields that consist of name and value

Figure B.1
The logical, black-box view
of a Lucene index
Licensed to Jason Ruesch <krhonos713@hotmail.com>

About index structure 395
pairs. Such a Document is then indexed by passing it to IndexWriter.addDocument
(Document). When searching, you again use the abstract Directory class to repre-
sent the index. You pass that Directory to the IndexSearcher class and then find
Documents that match a given query by passing search terms encapsulated in the
Query object to one of IndexSearcher’s search methods. The results are matching
Documents represented by the Hits object.

B.2 About index structure

When we described Lucene’s Directory class in section 1.5, we pointed out that
one of its concrete subclasses, FSDirectory, stores the index in a file-system direc-
tory. We have also used Indexer, a program for indexing text files, shown in list-
ing 1.1. Recall that we specified several arguments when we invoked Indexer
from the command line and that one of those arguments was the directory in
which we wanted Indexer to create a Lucene index. What does that directory look
like once Indexer is done running? What does it contain? In this section, we’ll
peek into a Lucene index and explain its structure.

 Lucene supports two index structures: multifile indexes and compound
indexes. The former is the original, older index structure; the latter was introduced
in Lucene 1.3 and made the default in version 1.4. Let’s look at each type of index
structure, starting with multifile.

B.2.1 Understanding the multifile index structure

If you look at the index directory created by our Indexer, you’ll see a number of
files whose names may seem random at first. These are index files, and they look
similar to those shown here:

-rw-rw-r-- 1 otis otis 4 Nov 22 22:43 deletable
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f1
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f2
-rw-rw-r-- 1 otis otis 31030502 Nov 22 22:28 _lfyc.fdt
-rw-rw-r-- 1 otis otis 8000000 Nov 22 22:28 _lfyc.fdx
-rw-rw-r-- 1 otis otis 16 Nov 22 22:28 _lfyc.fnm
-rw-rw-r-- 1 otis otis 1253701335 Nov 22 22:43 _lfyc.frq
-rw-rw-r-- 1 otis otis 1871279328 Nov 22 22:43 _lfyc.prx
-rw-rw-r-- 1 otis otis 14122 Nov 22 22:43 _lfyc.tii
-rw-rw-r-- 1 otis otis 1082950 Nov 22 22:43 _lfyc.tis
-rw-rw-r-- 1 otis otis 18 Nov 22 22:43 segments

Notice that some files share the same prefix. In this example index, a number of
files start with the prefix _lfyc, followed by various extensions. This leads us to
the notion of segments.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

396 APPENDIX B
Lucene index format
Index segments
A Lucene index consists of one or more segments, and each segment is made up
of several index files. Index files that belong to the same segment share a com-
mon prefix and differ in the suffix. In the previous example index, the index con-
sisted of a single segment whose files started with _lfyc:

 The following example shows an index with two segments, _lfyc and _gabh:

-rw-rw-r-- 1 otis otis 4 Nov 22 22:43 deletable
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f1
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f2
-rw-rw-r-- 1 otis otis 31030502 Nov 22 22:28 _lfyc.fdt
-rw-rw-r-- 1 otis otis 8000000 Nov 22 22:28 _lfyc.fdx
-rw-rw-r-- 1 otis otis 16 Nov 22 22:28 _lfyc.fnm
-rw-rw-r-- 1 otis otis 1253701335 Nov 22 22:43 _lfyc.frq
-rw-rw-r-- 1 otis otis 1871279328 Nov 22 22:43 _lfyc.prx
-rw-rw-r-- 1 otis otis 14122 Nov 22 22:43 _lfyc.tii
-rw-rw-r-- 1 otis otis 1082950 Nov 22 22:43 _lfyc.tis
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _gabh.f1
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _gabh.f2
-rw-rw-r-- 1 otis otis 31030502 Nov 22 22:28 _gabh.fdt
-rw-rw-r-- 1 otis otis 8000000 Nov 22 22:28 _gabh.fdx
-rw-rw-r-- 1 otis otis 16 Nov 22 22:28 _gabh.fnm
-rw-rw-r-- 1 otis otis 1253701335 Nov 22 22:43 _gabh.frq
-rw-rw-r-- 1 otis otis 1871279328 Nov 22 22:43 _gabh.prx
-rw-rw-r-- 1 otis otis 14122 Nov 22 22:43 _gabh.tii
-rw-rw-r-- 1 otis otis 1082950 Nov 22 22:43 _gabh.tis
-rw-rw-r-- 1 otis otis 18 Nov 22 22:43 segments

You can think of a segment as a subindex, although each segment isn’t a fully
independent index.

 As you can see in figure B.2, each segment contains one or more Lucene
Documents, the same ones we add to the index with the addDocument(Document)
method in the IndexWriter class. By now you may be wondering what function
segments serve in a Lucene index; what follows is the answer to that question.

Incremental indexing
Using segments lets you quickly add new Documents to the index by adding them
to newly created index segments and only periodically merging them with other,
existing segments. This process makes additions efficient because it minimizes
physical index modifications. Figure B.2 shows an index that holds 34 Documents.
This figure shows an unoptimized index—it contains multiple segments. If this
index were to be optimized using the default Lucene indexing parameters, all 34
of its documents would be merged in a single segment.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

About index structure 397
One of Lucene’s strengths is that it supports incremental indexing, which isn’t
something every IR library is capable of. Whereas some IR libraries need to rein-
dex the whole corpus when new data is added to their index, Lucene does not.
After a document has been added to an index, its content is immediately made
searchable. In IR terminology, this important feature is called incremental indexing.
The fact that Lucene supports incremental indexing makes Lucene suitable for
environments that deal with large bodies of information where complete reindex-
ing would be unwieldy.

 Because new segments are created as new Documents are indexed, the number
of segments, and hence index files, varies while indexing is in progress. Once an
index is fully built, the number of index files and segments remains steady.

A closer look at index files
Each index file carries a certain type of information essential to Lucene. If any
index file is modified or removed by anything other than Lucene itself, the index
becomes corrupt, and the only option is a complete reindexing of the original
data. On the other hand, you can add random files to a Lucene index directory
without corrupting the index. For instance, if we add a file called random-docu-
ment.txt to the index directory, as shown here, Lucene ignores that file, and the
index doesn’t become corrupt:

-rw-rw-r-- 1 otis otis 4 Nov 22 22:43 deletable
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f1

Figure B.2
Unoptimized index with
3 segments, holding
34 documents
Licensed to Jason Ruesch <krhonos713@hotmail.com>

398 APPENDIX B
Lucene index format
-rw-rw-r-- 1 otis otis 1000000 Nov 22 22:43 _lfyc.f2
-rw-rw-r-- 1 otis otis 31030502 Nov 22 22:28 _lfyc.fdt
-rw-rw-r-- 1 otis otis 8000000 Nov 22 22:28 _lfyc.fdx
-rw-rw-r-- 1 otis otis 16 Nov 22 22:28 _lfyc.fnm
-rw-rw-r-- 1 otis otis 1253701335 Nov 22 22:43 _lfyc.frq
-rw-rw-r-- 1 otis otis 1871279328 Nov 22 22:43 _lfyc.prx
-rw-rw-r-- 1 otis otis 14122 Nov 22 22:43 _lfyc.tii
-rw-rw-r-- 1 otis otis 1082950 Nov 22 22:43 _lfyc.tis
-rw-rw-r-- 1 otis otis 128 Nov 23 12:34
➾ random-document.txt
-rw-rw-r-- 1 otis otis 18 Nov 22 22:43 segments

The secret to this is the segments file. As you may have guessed from its name,
the segments file stores the names of all existing index segments. Before access-
ing any files in the index directory, Lucene consults this file to figure out which
index files to open and read. Our example index has a single segment, _lfyc,
whose name is stored in this segments file, so Lucene knows to look only for files
with the _lfyc prefix. Lucene also limits itself to files with known extensions, such
as .fdt, .fdx, and other extensions shown in our example, so even saving a file
with a segment prefix, such as _lfyc.txt, won’t throw Lucene off. Of course, pol-
luting an index directory with non-Lucene files is strongly discouraged.

 The exact number of files that constitute a Lucene index and each segment
varies from index to index and depends on the number of fields the index con-
tains. However, every index contains a single segments file and a single deletable
file. The latter file contains information about documents that have been marked
for deletion. If you look back at the previous example, you’ll notice two index files
with a .fN extension, where N is a number. These files correspond to the indexed
fields present in the indexed Documents. Recall that Indexer from listing 1.1 cre-
ated Lucene Documents with two fields: a text contents field and a keyword file-
name field. Because this index contains two indexed fields, our index contains two
files with the .fN extension. If this index had three indexed fields, a file named
_lfyc.f3 would also be present in the index directory. By looking for index files
with this extension, you can easily tell how many indexed fields an index has.
Another interesting thing to note about these .fN files is their size, which reflects
the number of Documents with that field. Now that you know this, you can tell that
the previous index has 1,000,000 documents just by glancing at the files in the
index directory.

Creating a multifile index
By now you should have a good grasp of the multifile index structure; but how do
you use the API to instruct Lucene to create a multifile index and not the default
Licensed to Jason Ruesch <krhonos713@hotmail.com>

About index structure 399
compound-file index? Let’s look back at our faithful Indexer from listing 1.1. In
that listing, you’ll spot the following:

 IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(), true);
 writer.setUseCompoundFile(false);

Because the compound-file index structure is the default, we disable it and
switch to a multifile index by calling setUseCompoundFile(false) on an Index-
Writer instance.

B.2.2 Understanding the compound index structure

When we described multifile indexes, we said that the number of index files
depends on the number of indexed fields present in the index. We also men-
tioned that new segments are created as documents are added to an index; since
a segment consists of a set of index files, this results in a variable and possibly
large number of files in an index directory. Although the multifile index structure
is straightforward and works for most scenarios, it isn’t suitable for environments
with large number of indexes, indexes with a large number of fields, and other
environment where using Lucene results in a large number of index files.

 Most, if not all, contemporary operating systems limit the number of files in
the system that can be opened at one time. Recall that Lucene creates new seg-
ments as new documents are added, and every so often it merges them to reduce
the number of index files. However, while the merge procedure is executing, the
number of index files doubles. If Lucene is used in an environment with lots of
indexes that are being searched or indexed simultaneously, it’s possible to reach
the limit of open files set by the operating system. This can also happen with a
single Lucene index if the index isn’t optimized or if other applications are run-
ning simultaneously and keeping many files open. Lucene’s use of open file han-
dles depends on the structure and state of an index. Later in the appendix, we
present formulas for calculating the number of open files that Lucene will require
for handling your indexes.

Compound index files
The only visible difference between the compound and multifile indexes is the
contents of an index directory. Here’s an example of a compound index:

-rw-rw-r-- 1 otis otis 418 Oct 12 22:13 _2.cfs
-rw-rw-r-- 1 otis otis 4 Oct 12 22:13 deletable
-rw-rw-r-- 1 otis otis 15 Oct 12 22:13 segments
Licensed to Jason Ruesch <krhonos713@hotmail.com>

400 APPENDIX B
Lucene index format
Instead of having to open and read 10 files from the index, as in the multifile
index, Lucene must open only two files when accessing this compound index,
thereby consuming fewer system resources.1 The compound index reduces the
number of index files, but the concept of segments, documents, fields, and terms
still applies. The difference is that a compound index contains a single .cfs file
per segment, whereas each segment in a multifile index contains consists of
seven different files. The compound structure encapsulates individual index files
in a single .cfs file.

Creating a compound index
Because the compound index structure is the default, you don’t have to do any-
thing to specify it. However, if you like explicit code, you can call the setUse-
Compound(boolean) method, passing it a true value:

IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(), true);
writer.setUseCompoundFile(true);

Pleasantly, you aren’t locked into the multifile or compound format. After index-
ing, you can still convert from one format to another.

B.2.3 Converting from one index structure to the other

It’s important to note that you can switch between the two described index struc-
tures at any point during indexing. All you have to do is call the IndexWriter’s set-
UseCompoundFiles(boolean) method at any time during indexing; the next time
Lucene merges index segments, it will convert the index to whichever structure
you specified.

 Similarly, you can convert the structure of an existing index without adding
more documents to it. For example, you may have a multifile index that you want
to convert to a compound one, to reduce the number of open files used by Lucene.
To do so, open your index with IndexWriter, specify the compound structure,
optimize the index, and close it:

IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(), false);
writer.setUseCompoundFile(true);
writer.optimize();
writer.close();

1 We don’t count the deletable file because it doesn’t have to be read during indexing or searching.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Choosing the index structure 401
Note that the third IndexWriter parameter is false to ensure that the existing
index isn’t destroyed. We discussed optimizing indexes in section 2.8. Optimiz-
ing forces Lucene to merge index segments, thereby giving it a chance to write
them in a new format specified via the setUseCompoundFile(boolean) method.

B.3 Choosing the index structure

Although switching between the two index structures is simple, you may want to
know beforehand how many open files resources Lucene will use when accessing
your index. If you’re designing a system with multiple simultaneously indexed
and searched indexes, you’ll most definitely want to take out a pen and a piece of
paper and do some simple math with us now.

B.3.1 Calculating the number of open files

Let’s consider a multifile index first. A multifile index contains seven index files
for each segment, an additional file for each indexed field per segment, and a
single deletable and a single segments file for the whole index. Imagine a system
that contains 100 Lucene indexes, each with 10 indexed fields. Also assume that
these indexes aren’t optimized and that each has nine segments that haven’t been
merged into a single segment yet, as is often the case during indexing. If all 100
indexes are open for searching at the same time, this will result in 15,300 open
files. Here is how we got this number:

100 indexes * (9 segments per index *
 (7 files per segment + 10 files for indexed fields))
= 100 * 9 * 17
= 15300 open files

Although today’s computers can usually handle this many open files, most come
with a preconfigured limit that is much lower. In section 2.7.1, we discuss how to
check and change this in some operating systems.

 Next, let’s consider the same 100 indexes, but this time using the compound
structure. Only a single file with a .cfs extension is created per segment, in addi-
tion to a single deletable and a single segments file for the whole index. Therefore,
if we use the compound index instead of the multifile one, the number of open
files is reduced to 900:

100 indexes * (9 segments per index * (1 file per segment))
= 100 * 9 * 1
= 900 open files
Licensed to Jason Ruesch <krhonos713@hotmail.com>

402 APPENDIX B
Lucene index format
The lesson here is that if you need to develop Lucene-based software that will
run in environments with a large number of Lucene indexes with a number of
indexed fields, you should consider using a compound index. Of course, you can
use a compound index even if you’re writing a simple application that deals with
a single Lucene index.

B.3.2 Comparing performance

Performance is another factor you should consider when choosing the index
structure. Some people have reported that creating an index with a compound
structure is 5–10% slower than creating an equivalent multifile index; our index-
ing performance test, shown in listing B.1, confirms this. In this test, we create
two parallel indexes with 25,000 artificially created documents each. In the
testTiming() method, we time how long the indexing process takes for each type
of index and assert that creation of the compound index takes more time than
creation of its multifield cousin.

public class CompoundVersusMultiFileIndexTest extends TestCase {

 private Directory cDir;
 private Directory mDir;
 private Collection docs = loadDocuments(5000, 10);

 protected void setUp() throws IOException {
 String indexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index-dir";

 String cIndexDir = indexDir + "-compound";
 String mIndexDir = indexDir + "-multi";
 (new File(cIndexDir)).delete();
 (new File(mIndexDir)).delete();

 cDir = FSDirectory.getDirectory(cIndexDir, true);
 mDir = FSDirectory.getDirectory(mIndexDir, true);
 }

 public void testTiming() throws IOException {
 long cTiming = timeIndexWriter(cDir, true);
 long mTiming = timeIndexWriter(mDir, false);

 assertTrue(cTiming > mTiming);

 System.out.println("Compound Time : " + (cTiming) + " ms");
 System.out.println("Multi-file Time: " + (mTiming) + " ms");
 }

Listing B.1 Comparison of compound and multifile index performance

Compound timing greater
than multifile timing

 b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Choosing the index structure 403
 private long timeIndexWriter(Directory dir, boolean isCompound)
 throws IOException {
 long start = System.currentTimeMillis();
 addDocuments(dir, isCompound);
 long stop = System.currentTimeMillis();
 return (stop - start);
 }

 private void addDocuments(Directory dir, boolean isCompound)
 throws IOException {
 IndexWriter writer = new IndexWriter(dir, new SimpleAnalyzer(),
 true);
 writer.setUseCompoundFile(isCompound);

 // change to adjust performance of indexing with FSDirectory
 writer.mergeFactor = writer.mergeFactor;
 writer.maxMergeDocs = writer.maxMergeDocs;
 writer.minMergeDocs = writer.minMergeDocs;

 for (Iterator iter = docs.iterator(); iter.hasNext();) {
 Document doc = new Document();
 String word = (String) iter.next();
 doc.add(Field.Keyword("keyword", word));
 doc.add(Field.UnIndexed("unindexed", word));
 doc.add(Field.UnStored("unstored", word));
 doc.add(Field.Text("text", word));
 writer.addDocument(doc);
 }
 writer.optimize();
 writer.close();
 }

 private Collection loadDocuments(int numDocs, int wordsPerDoc) {
 Collection docs = new ArrayList(numDocs);
 for (int i = 0; i < numDocs; i++) {
 StringBuffer doc = new StringBuffer(wordsPerDoc);
 for (int j = 0; j < wordsPerDoc; j++) {
 doc.append("Bibamus ");
 }
 docs.add(doc.toString());
 }
 return docs;
 }
}

This test confirms that creating an index with the compound structure is some-
what slower than building a multifile index. Exactly how much slower varies
and depends on the number of fields, their length, the indexing parameters

 b
Licensed to Jason Ruesch <krhonos713@hotmail.com>

404 APPENDIX B
Lucene index format
used, and so on. For instance, you may be able to get the compound structure
index to outperform the multifile index by adjusting some of the indexing param-
eters described in section 2.7.

 Here’s our advice: If you need to squeeze every bit of indexing performance
out of Lucene, use the multifile index structure, but first try tuning compound
structure indexing by manipulating the indexing parameters covered in sec-
tion 2.7. This performance difference and the difference in the amount of sys-
tem resources the two index structures use are their only notable differences. All
Lucene’s features work equally well with either type of index.

B.4 Inverted index

Lucene uses a well-known index structure called an inverted index. Quite simply,
and probably unsurprisingly, an inverted index is an inside-out arrangement of
documents such that terms take center stage. Each term refers to the documents
that contain it. Let’s dissect our sample book data index to get a deeper glimpse
at the files in an index Directory.

 Regardless of whether you’re working with a RAMDirectory, an FSDirectory,
or any other Directory implementation, the internal structure is a group of files.
In a RAMDirectory, the files are virtual and live entirely within RAM. FSDirectory
literally represents an index as a file-system directory, as described earlier in
this appendix.

 The compound file mode (added in Lucene 1.3) adds an additional twist
regarding the files in a Directory. When an IndexWriter is set for compound file
mode, the “files” are written to a single .cfs file, which alleviates the common
issue of running out of file handles. See the section “Compound index files” in
this appendix for more information on the compound file mode.

B.4.1 Inside the index

The Lucene index format is detailed in all its gory detail on the Lucene web site
at http://jakarta.apache.org/lucene/docs/fileformats.html. It would be painful for
us, and tedious for you, if we repeated this detailed information here. Rather, we
have chosen to summarize the overall file structure using our sample book data
as a concrete example.

 Our summary glosses over most of the intricacies of data compression used in
the actual data representations. This extrapolation is helpful in giving you a feel
for the structure instead of getting caught up in the minutiae (which, again, are
detailed on the Lucene web site).
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Inverted index 405
Figure B.3 represents a slice of our sample book index. The slice is of a single seg-
ment (in this case, we had an optimized index with only a single segment). A seg-
ment is given a unique filename prefix (_c in this case).

 The following sections describe each of the files shown in figure B.3 in more
detail.

Field names (.fnm)
The .fnm file contains all the field names used by documents in the associated
segment. Each field is flagged to indicate whether it’s indexed or vectored. The
order of the field names in the .fnm file is determined during indexing and isn’t
necessarily alphabetical. The position of a field in the .fnm file is used to associate

Figure B.3 Detailed look inside the Lucene index format
Licensed to Jason Ruesch <krhonos713@hotmail.com>

406 APPENDIX B
Lucene index format
it with the normalization files (files with suffix .f[0–9]*). We don’t delve into the
normalization files here; refer to the Lucene web site for details.

 In our sample index, only the subject field is vectored. The url field was added
as a Field.UnIndexed field, which is neither indexed nor vectored. The .fnm file
shown in figure B.4 is a complete view of the actual file.

Term dictionary (.tis)
All terms (tuples of field name and value) in a segment are stored in the .tis file.
Terms are ordered first alphabetically by field name and then by value within a
field. Each term entry contains its document frequency: the number of documents
that contain this term within the segment.

 Figure B.4 shows only a sampling of the terms in our index, one or more from
each field. Note that the url field is missing because it was added as an UnIndexed
field, which is stored only and not available as terms. Not shown is the .tii file,
which is a cross-section of the .tis file designed to be kept in physical memory for
random access to the .tis file. For each term in the .tis file, the .frq file contains
entries for each document containing the term.

 In our sample index, two books have the value “junit” in the contents field:
JUnit in Action (document ID 6), and Java Development with Ant (document ID 5).

Term frequencies
Term frequencies in each document are listed in the .frq file. In our sample
index, Java Development with Ant (document ID 5) has the value “junit” once in
the contents field. JUnit in Action has the value “junit” twice, provided once by
the title and once by the subject. Our contents field is an aggregation of title,
subject, and author. The frequency of a term in a document factors into the score
calculation (see section 3.3) and typically boosts a document’s relevance for
higher frequencies.

 For each document listed in the .frq file, the positions (.prx) file contains
entries for each occurrence of the term within a document.

Term positions
The .prx file lists the position of each term within a document. The position
information is used when queries demand it, such as phrase queries and span
queries. Position information for tokenized fields comes directly from the token
position increments designated during analysis.

 Figure B.4 shows three positions, for each occurrence of the term junit. The
first occurrence is in document 5 (Java Development with Ant) in position 9. In the
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Summary 407
case of document 5, the field value (after analysis) is “java development ant
apache jakarta ant build tool junit java development erik hatcher steve lough-
ran”. We used the StandardAnalyzer; thus stop words (with in Java Development
with Ant, for example) are removed and aren’t accounted for in positional infor-
mation (see section 4.7.3 for more on stop word removal and positional informa-
tion). Document 6, JUnit in Action, has a contents field containing the value
“junit” twice, once in position 1 and again in position 3: “junit action junit unit
testing mock objects vincent massol ted husted”.2

B.5 Summary

The rationale for the index structure is two-fold: maximum performance and
minimum resource utilization. For example, if a field isn’t indexed it’s a very
quick operation to dismiss it entirely from queries based on the indexed flag of
the .fnm file. The .tii file, cached in RAM, allows for rapid random access into the
term dictionary .tis file. Phrase and span queries need not look for positional
information if the term itself isn’t present. Streamlining the information most
often needed, and minimizing the number of file accesses during searches is of
critical concern. These are just some examples of how well thought out the index
structure design was. If this sort of low-level optimization is of interest, please
refer to the Lucene index file format details on the Lucene web site, where
details we have glossed over here can be found.

2 We’re indebted to Luke, the fantastic index inspector, for allowing us to easily gather some of the data
provided about the index structure.
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Resources
408

Licensed to Jason Ruesch <krhonos713@hotmail.com>

Term vectors 409
Web search engines are your friends. Type lucene in your favorite search engine,
and you’ll find many interesting Lucene-related projects. Another good place to
look is SourceForge; a search for lucene at SourceForge displays a number of
open-source projects written on top of Lucene.

C.1 Internationalization

■ Bray, Tim, “Characters vs. Bytes,” http://www.tbray.org/ongoing/When/200x/
2003/04/26/UTF

■ Green, Dale, “Trail: Internationalization,” http://java.sun.com/docs/books/
tutorial/i18n/index.html

■ Intertwingly, “Unicode and Weblogs,” http://www.intertwingly.net/blog/1763.
html

■ Peterson, Erik, “Chinese Character Dictionary—Unicode Version”, http://
www.mandarintools.com/chardict_u8.html

■ Spolsky, Joel, “The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses!),”
http://www.joelonsoftware.com/articles/Unicode.html

C.2 Language detection

■ Apache Bug Database patch: language guesser contribution, http://
issues.apache.org/bugzilla/show_bug.cgi?id=26763

■ JTextCat 0.1, http://www.jedi.be/JTextCat/index.html
■ NGramJ, http://ngramj.sourceforge.net/

C.3 Term vectors

■ “How LSI Works,” http://javelina.cet.middlebury.edu/lsa/out/lsa_explanation.
htm

■ “Latent Semantic Indexing (LSI),” http://www.cs.utk.edu/~lsi/
■ Stata, Raymie, Krishna Bharat, and Farzin Maghoul, “The Term Vector

Database: Fast Access to Indexing Terms for Web Pages,” http://www9.org/
w9cdrom/159/159.html
Licensed to Jason Ruesch <krhonos713@hotmail.com>

410 APPENDIX C
Resources
C.4 Lucene ports

■ CLucene, http://www.sourceforge.net/projects/clucene/
■ dotLucene, http://sourceforge.net/projects/dotlucene/
■ Lupy, http://www.divmod.org/Home/Projects/Lupy/
■ Plucene, http://search.cpan.org/dist/Plucene/
■ PyLucene, http://pylucene.osafoundation.org/

C.5 Case studies

■ Alias-i, http://www.alias-i.com/
■ jGuru, http://www.jguru.com/
■ Michaels, http://www.michaels.com/
■ Nutch, http://www.nutch.org/
■ SearchBlox Software, http://www.searchblox.com/
■ TheServerSide.com, http://www.theserverside.com/
■ XtraMind Technologies, http://www.xtramind.com/

C.6 Document parsers

■ CyberNeko Tools for XNI, http://www.apache.org/~andyc/neko/doc/
■ Digester, http://jakarta.apache.org/commons/digester/
■ JTidy, http://sourceforge.net/projects/jtidy
■ PDFBox, http://www.pdfbox.org/
■ TextMining.org, http://www.textmining.org/
■ Xerces2, http://xml.apache.org/xerces2-j/

C.7 Miscellaneous

■ Calishain, Tara, and Rael Dornfest, Google Hacks (O’Reilly, 2003)
■ Gilleland, Michael, “Levenshtein Distance, in Three Flavors,” http://www.

merriampark.com/ld.htm
■ GNU Compiler for the Java (GCJ), http://gcc.gnu.org/java/
■ Google search results for Lucene, http://www.google.com/search?q=lucene
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Doug Cutting’s publications 411
■ Jakarta Lucene, http://jakarta.apache.org/lucene
■ Lucene Sandbox, http://jakarta.apache.org/lucene/docs/lucene-sandbox/
■ SourceForge search results for Lucene, http://sourceforge.net/search?

type_of_search=soft&words=lucene
■ Suffix trees, http://sequence.rutgers.edu/st/
■ SWIG, http://www.swig.org/

C.8 IR software

■ dmoz results for Information Retrieval, http://dmoz.org/Computers/Software/
Information_Retrieval/

■ Egothor, http://www.egothor.org/
■ Google Directory results for Information Retrieval, http://directory.google.

com/Top/Computers/Software/Information_Retrieval/
■ Harvest, http://www.sourceforge.net/projects/harvest/
■ Harvest-NG, http://webharvest.sourceforge.net/ng/
■ ht://Dig, http://www.htdig.org/
■ Managing Gigabytes for Java (MG4J), http://mg4j.dsi.unimi.it/
■ Namazu, http://www.namazu.org/
■ Search Tools for Web Sites and Intranets, http://www.searchtools.com/
■ SWISH++, http://homepage.mac.com/pauljlucas/software/swish/
■ SWISH-E, http://swish-e.org/
■ Verity, http://www.verity.com/
■ Webglimpse, http://webglimpse.net
■ Xapian, http://www.xapian.org/

C.9 Doug Cutting’s publications

Doug’s official online list of publications, from which this was derived, is avail-
able at http://lucene.sourceforge.net/publications.html.

C.9.1 Conference papers
■ “An Interpreter for Phonological Rules,” coauthored with J. Harrington,

Proceedings of Institute of Acoustics Autumn Conference, November 1986
Licensed to Jason Ruesch <krhonos713@hotmail.com>

412 APPENDIX C
Resources
■ “Information Theater versus Information Refinery,” coauthored with J.
Pedersen, P.-K. Halvorsen, and M. Withgott, AAAI Spring Symposium on
Text-based Intelligent Systems, March 1990

■ “Optimizations for Dynamic Inverted Index Maintenance,” coauthored
with J. Pedersen, Proceedings of SIGIR ‘90, September 1990

■ “An Object-Oriented Architecture for Text Retrieval,” coauthored with J. O.
Pedersen and P.-K. Halvorsen, Proceedings of RIAO ‘91, April 1991

■ “Snippet Search: a Single Phrase Approach to Text Access,” coauthored
with J. O. Pedersen and J. W. Tukey, Proceedings of the 1991 Joint Statisti-
cal Meetings, August 1991

■ “A Practical Part-of-Speech Tagger,” coauthored with J. Kupiec, J. Pedersen,
and P. Sibun, Proceedings of the Third Conference on Applied Natural Lan-
guage Processing, April 1992

■ “Scatter/Gather: A Cluster-based Approach to Browsing Large Document
Collections,” coauthored with D. Karger, J. Pedersen, and J. Tukey, Pro-
ceedings of SIGIR ‘92, June 1992

■ “Constant Interaction-Time Scatter/Gather Browsing of Very Large Docu-
ment Collections,” coauthored with D. Karger and J. Pedersen, Proceedings
of SIGIR ‘93, June 1993

■ “Porting a Part-of-Speech Tagger to Swedish,” Nordic Datalingvistik Dagen
1993, Stockholm, June 1993

■ “Space Optimizations for Total Ranking,” coauthored with J. Pedersen,
Proceedings of RIAO ‘97, Montreal, Quebec, June 1997

C.9.2 U.S. Patents
■ 5,278,980: “Iterative technique for phrase query formation and an informa-

tion retrieval system employing same,” with J. Pedersen, P.-K. Halvorsen,
J. Tukey, E. Bier, and D. Bobrow, filed August 1991

■ 5,442,778: “Scatter-gather: a cluster-based method and apparatus for brows-
ing large document collections,” with J. Pedersen, D. Karger, and J. Tukey,
filed November 1991

■ 5,390,259: “Methods and apparatus for selecting semantically significant
images in a document image without decoding image content,” with M.
Withgott, S. Bagley, D. Bloomberg, D. Huttenlocher, R. Kaplan, T. Cass,
P.-K. Halvorsen, and R. Rao, filed November 1991
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Doug Cutting’s publications 413
■ 5,625,554 “Finite-state transduction of related word forms for text indexing
and retrieval,” with P.-K. Halvorsen, R.M. Kaplan, L. Karttunen, M. Kay,
and J. Pedersen, filed July 1992

■ 5,483,650 “Method of Constant Interaction-Time Clustering Applied to
Document Browsing,” with J. Pedersen and D. Karger, filed November 1992

■ 5,384,703 “Method and apparatus for summarizing documents according
to theme,” with M. Withgott, filed July 1993

■ 5,838,323 “Document summary computer system user interface,” with
D. Rose, J Bornstein, and J. Hatton, filed September 1995

■ 5,867,164 “Interactive document summarization,” with D. Rose, J. Born-
stein, and J. Hatton, filed September 1995

■ 5,870,740 “System and method for improving the ranking of information
retrieval results for short queries,” with D. Rose, filed September 1996
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Licensed to Jason Ruesch <krhonos713@hotmail.com>

index
A

abbreviation, handling 355
accuracy 360
Ackley, Ryan 250
Adobe Systems 235
agent, distributed 349
AliasAnalyzer 364
Alias-i 361
Almaer, Dion 371
alternative spellings 354
analysis 103

during indexing 105
field-specific 108
foreign languages 140
in Nutch 145
position gaps 136
positional gap issues 138
versus parsing 107
with QueryParser 106

Analyzers 19
additional 282
Brazilian 282
buffering 130
building blocks 110
built-in 104, 119
Chinese 282
choosing 103
CJK 282
Dutch 282
field types 105
for highlighting 300
French 282
injecting synonyms 129, 296
SimpleAnalyzer 108
Snowball 283

StandardAnalyzer 120
StopAnalyzer 119
subword 357
using WordNet 296
visualizing 112
WhitespaceAnalyzer 104
with QueryParser 72

Ant
building Lucene 391
building Sandbox 310
indexing a fileset 284

Antiword 264
ANTLR 100, 336
Apache Jakarta 7, 9
Apache Software Foundation 9
Apache Software License 7
Arabic 359
architecture

field design 374
TheServerSide

configuration 379
ASCII 142
Asian language analysis 142

B

Bakhtiar, Amir 320
Beagle 318
Bell, Timothy C. 26
Berkeley DB, storing

index 307
Bialecki, Andrzej 271
biomedical, use of Lucene 352
BooleanQuery 85

from QueryParser 72, 87
n-gram extension 358

TooManyClauses
exception 215

used with PhraseQuery 158
boosting 79

documents 377
documents and fields 38–39

BrazilianAnalyzer 282

C

C++ 10
CachingWrappingFilter

171, 177
caching DateFilter 173

Cafarella, Michael 326
Carpenter, Bob 351
cell phone, T9 WordNet

interface 297
ChainedFilter 177, 304
Chandler 307, 322
charades 125
Chinese analysis 142–143, 282
CJK (Chinese Japanese

Korean) 142
CJKAnalyzer 143, 145, 282
Clark, Andy 245
Clark, Mike 214
CLucene 314, 317

supported platforms 314
Unicode support 316

color
distance formula 366
indexing 365

command-line interface 269
compound index

creating 400
415

Licensed to Jason Ruesch <krhonos713@hotmail.com>

416 INDEX
compound index (continued)
format 341

converting native files to
ASCII 142

coordination, query term 79
Cozens, Simon 318
CPAN 318
crawler 372

in SearchBlox 342
with XM-

InformationMinder 347
crawling alternatives 330
CSS in highlighting 301
Cutting, Doug 9

relevant work 9
CVS

obtaining Lucene’s source
code 391

Sandbox 268
CyberNeko. See NekoHTML
CzechAnalyzer 282

D

database 8
indexing 362
primary key 362
searching 362
storing index inside Berkeley

DB 307
date, indexing 216
DateField 39

alternatives 218
issue 216
min and max constants 173
range queries 96
used with DateFilter 173

DateFilter 171–173
caching 177
open-ended ranges 172
with caching 177
within ChainedFilter 306

DbDirectory 308
debugging, queries 94
DefaultSimilarity 79
deleting documents 375
Digester

configuration 379
Directory 19

FSDirectory 19
RAMDirectory 19

directory in Berkeley DB 308
DMOZ 27
DNA 354
Docco 265
DocSearcher 264
Document 20, 71

copy/paste from Luke 274
editing with Luke 275
heterogenous fields 33

document boosting 377
document frequency

seen with Luke 273
document handler

customizing for Ant 286
indexing with Ant 285

document type handling
in SearchBlox 342

documentation 388
dotLucene 317–318
downloading Lucene 388
Dutch 354
DutchAnalyzer 282

E

Egothor 24
encoding

ISO-8859-1 142
UTF-8 140

Etymon PJ 264
Explanation 80

F

Field 20–22
appending to 33
keyword, analysis 121
storing term vectors 185

file handle
issue 340

Filter 76
caching 177
ChainedFilter 304
custom 209
using HitCollector 203
within a Query 212

FilteredQuery 178, 212
filtering

search space 171–178
token. See TokenFilter

foreign language analysis 140

Formatter 300
Fragmenter 300
FrenchAnalyzer 282
fuzzy string similarity 351
FuzzyEnum 350
FuzzyQuery 92

from QueryParser 93
issues 350
performance issue 213
prohibiting 204

G

GCJ 308
German analysis 141
Giustina, Fabrizio 242
Glimpse 26
GNOME 318
Google 6, 27

alternative word
suggestions 128

analysis 103
API 352
definitions 292
expense 372
term highlighting 300

government intelligence,
use of Lucene 352

H

Harvest 26
Harvest-NG 26
Harwood, Mark 300
highlighting, query terms

300–303, 343
Hindi 354
HitCollector 76, 201–203

customizing 350
priority-queue idea 360
used by Filters 203

Hits 24, 70–71, 76
highlighting 303

ht://Dig 26
TheServerSide usage 371

HTML 8
cookie 77
highlighting 301
<meta> tag 140
parsing 107, 329, 352

HTMLParser 264
Licensed to Jason Ruesch <krhonos713@hotmail.com>

INDEX 417
HTTP
crawler. See Nutch
session 77

HTTP request
content-type 140

I

I18N. See internationalization
index optimization 56–59

disk space requirements 56
performance effect 56
when to do it 58
why do it 57

index structure
converting 400–401
performance comparison 402

IndexFiles 389
IndexHTML 390
indexing

adding documents 31–33
analysis during 105
Ant task 285
at TheServerSide 373
browsing tool 271
buffering 42
colors 365
compound format 341
compound index 399–400
concurrency rules 59–60
creation of 12
data structures 11
dates 39–40, 216
debugging 66
directory structure 395
disabling locking 66
file format 404
file view with Luke 277
.fnm file 405
for sorting 41
format 393
framework 225–226, 254–263
HTML 241, 248
incremental 396
index files 397
jGuru design 332
limiting field length 54–55
locking 62–66
logical view 394
maxFieldLength 54–55
maxMergeDocs 42–47

mergeFactor 42–47
merging indexes 52
Microsoft Word documents

248–251
minMergeDocs 42, 47
multifile index structure 395
numbers 40–41
open files 47–48
parallelization 52–54
PDF 235–241
performance 42–47
plain-text documents

253–254
removing documents 33–36
rich-text documents 224
RTF documents 252–253
scheduling 367
segments 396–397
status with LIMO 279
steps 29–31
storing in Berkeley DB 307
term dictionary 406
term frequency 406
term positions 406
thread-safety 60–62
tools 269
undeleting documents 36
updating documents 36

batching 37
using RAMDirectory 48–52
XML 226–235

IndexReader 199
deleting documents 375
retrieving term vectors 186

IndexSearcher 23, 70, 78
n-gram extension 358
paging through results 77
using 75

IndexWriter 19
addDocument 106
analyzer 123

information overload 6
Information Retrieval (IR) 7

libraries 24–26
Installing Lucene 387–392
intelligent agent 6
internationalization 141
inverse document frequency 79
inverted index 404
IR. See Information Retrieval (IR)
ISO-8859-1 142

J

Jakarta Commons Digester
230–235

Jakarta POI 249–250
Japanese analysis 142
Java Messaging Service 352

in XM-
InformationMinder 347

Java, keyword 331
JavaCC 100

building Lucene 392
JavaScript

character escaping 292
query construction 291
query validation 291

JDOM 264
jGuru 341
JGuruMultiSearcher 339
Jones, Tim 150
JPedal 264
jSearch 7
JTidy 242–245

indexing HTML with
Ant 285

JUnitPerf 213
JWordNet 297

K

keyword analyzer 124
Konrad, Karsten 344
Korean analysis 142

L

language
handling 354
support 343

LARM 7, 372
Levenshtein distance

algorithm 92
lexicon, definition 331
LIMO 279
LingPipe 353
linguistics 353
Litchfield, Ben 236
Lookout 6, 318
Lucene

building from source 391
community 10
Licensed to Jason Ruesch <krhonos713@hotmail.com>

418 INDEX
Lucene (continued)
demonstration applications

389–391
developers 10
documentation 388
downloading 388
history of 9
index 11
integration of 8
ports 10
sample application 11
Sandbox 268
understanding 6
users of 10
what it is 7

Lucene ports 312–324
summary 313

Lucene Wiki 7
Lucene.Net 6
lucli 269
Luke 271, 391

plug-ins 278
Lupy 308, 320–322

M

Managing Gigabytes 26
Matalon, Dror 269
Metaphone 125
MG4J 26
Michaels.com 361–371
Microsoft 6, 318
Microsoft Index Server 26
Microsoft Outlook 6, 318
Microsoft Windows 14
Microsoft Word 8

parsing 107
Miller, George 292

and WordNet 292
misspellings 354

matching 363
mock object 131, 211
Moffat, Alistair 26
morphological variation 355
Movable Type 320
MSN 6
MultiFieldQueryParser 160
multifile index, creating 398
multiple indexes 331
MultiSearcher 178–185

alternative 339

multithreaded searching.
See ParallelMultiSearcher

Multivalent 264

N

Namazu 26
native2ascii 142
natural language with XM-

InformationMinder 345
NekoHTML 245–248, 329, 352
.NET 10
n-gram TokenStream 357
NGramQuery 358
NGramSearcher 358
Nioche, Julien 279
noisy-channel model 355
normalization

field length 79
query 79

numeric
padding 206
range queries 205

Nutch 7, 9, 329
Explanation 81

O

OLE 2 Compound Document
format 249

open files formula 401
OpenOffice SDK 264
optimize 340
orthographic variation 354
Overture 6

P

paging
at jGuru 336
TheServerSide search

results 383
through Hits 77

ParallelMultiSearcher 180
Parr, Terence 329
ParseException 204, 379
parsing 73

query expressions.
See QueryParser

QueryParser method 73
stripping plurals 334

versus analysis 107
partitioning indexes 180
PDF 8

See also indexing PDF
PDF Text Stream 264
PDFBox 236–241

built-in Lucene support 239
PerFieldAnalyzerWrapper

for Keyword fields 123
performance

issues with WildcardQuery 91
iterating Hits warning 369
load testing 217
of sorting 157
SearchBlox case study 341
statistics 370
testing 213, 220

Perl 10
pharmaceutical, uses of

Lucene 347
PhrasePrefixQuery 157–159

handling synonyms
alternative 134

PhraseQuery 87
compared to

PhrasePrefixQuery 158
forcing term order 208
from QueryParser 90
in contrast to

SpanNearQuery 166
multiple terms 89
position increment issue 138
scoring 90
slop factor 139
with synonyms 132

Piccolo 264
Plucene 318–320
POI 264
Porter stemming algorithm 136
Porter, Dr. Martin 25,

136, 283
position, increment offset in

SpanQuery 161
precision 11, 360
PrefixQuery 84

from QueryParser 85
optimized

WildcardQuery 92
Properties file, encoding 142
PyLucene 308, 322–323
Python 10
Licensed to Jason Ruesch <krhonos713@hotmail.com>

INDEX 419
Q

Query 23, 70, 72
creating programatically 81
preprocessing at jGuru 335
starts with 84
statistics 337
toString 94
See also QueryParser

query expression, parsing.
See QueryParser

QueryFilter 171, 173, 209
alternative using

BooleanQuery 176
as security filter 174
within ChainedFilter 305

QueryHandler 328
querying 70
QueryParser 70, 72–74, 93

analysis 106
analysis issues 134
analyzer choice 107
and SpanQuery 170
boosting queries 99
combining with another

Query 82
combining with programmatic

queries 100
creating BooleanQuery 87
creating FuzzyQuery 93, 99
creating PhraseQuery 90, 98
creating PrefixQuery 85, 99
creating RangeQuery 84
creating SpanNearQuery 208
creating TermQuery 83
creating WildcardQuery

91, 99
custom date parsing 218
date parsing locale 97
date ranges 96
default operator 94
escape characters 93
expression syntax 74
extending 203–209
field selection 95
grouping expressions 95
handling numeric ranges 205
issues 100, 107
Keyword fields 122
lowercasing wildcard and

prefix queries 99

overriding for synonym
injection 134

PhraseQuery issue 138
prohibiting expensive

queries 204
range queries 96
TheServerSide custom

implementation 378
Quick, Andy 242

R

Raggett, Dave 242
RAM, loading indexes into 77
RAMDirectory, loading file

index into 77
RangeQuery 83

from QueryParser 84
handling numeric data 205
spanning multiple

indexes 179
raw score 78
recall 11, 360
regular expressions.

See WildcardQuery
relational database. See database
relevance 76
remote searching 180
RemoteSearchable 180
RGB indexing 366
RMI, searching via 180
Ruby 10
Russian analysis 141

S

Sandbox 268
analyzers 284
building components 309
ChainedFilter 177
Highlighter 300

SAX 352
scalability with SearchBlox 341
score 70, 77–78

normalization 78
ScoreDocComparator 198
Scorer 300
scoring 78

affected by HitCollector 203
formula 78

scrolling. See paging

search 68
products 26
resources 27

search engine 7
See Nutch; SearchBlox

SearchBlox 7, 265–344
SearchClient 182
SearchFiles 389
searching 10

API 70
filtering results 171–178
for similar documents 186
indexes in parallel 180
multiple indexes 178
on multiple fields 159
TheServerSide 373
using HitCollector 201
with Luke 275

SearchServer 180
Searchtools 27
security filtering 174
Selvaraj, Robert 341
Short, Allen 320
similar term query.

See FuzzyQuery
similarity 80

between documents.
See term vectors

customizing 350
with XM-

InformationMinder 345
SimpleAnalyzer 108, 119

example 104
SimpleHTMLFormatter 301
Simpy 265
slop

with PhrasePrefixQuery 159
with SpanNearQuery 166

Snowball 25
SnowballAnalyzer 282
SortComparatorSource

195, 198
SortField 200–201
sorting

accessing custom value 200
alphabetically 154
by a field 154
by geographic distance 195
by index order 153
by multiple fields 155
by relevance 152
Licensed to Jason Ruesch <krhonos713@hotmail.com>

420 INDEX
sorting (continued)
custom method 195–201
example 150
field type 156
performance 157
reversing 154
search results 150–157
specifying locale 157

Soundex. See Metaphone
source code, Sandbox 268, 309
SpanFirstQuery 162, 165
Spanish 354
SpanNearQuery 99, 162, 166,

203, 208
SpanNotQuery 162, 168
SpanOrQuery 162, 169
SpanQuery 161–170

aggregating 169
and QueryParser 170
visualization utility 164

SpanTermQuery 162–165
spelling correction 354
Spencer, Dave 293
spidering alternatives 330
SQL 362

similarities with
QueryParser 72

StandardAnalyzer 119–120
example 104–105
with Asian languages 143
with CJK characters

142, 145
statistics

at jGuru 337
Michaels.com 370

Steinbach, Ralf 344
stemming alternative 359
stemming analyzer 283
Stenzhorn, Holger 344
stop words 20, 103

at jGuru 335
StopAnalyzer 119

example 104
StringTemplate 330
SubWordAnalyzer 357
SWIG 308
SWISH 26
SWISH++ 26
SWISH-E 26
SynonymEngine 131

mock 132

synonyms
analyzer injection 129
indexing 363
injecting with

PhrasePrefixQuery 159
with PhraseQuery 133
See also WordNet

T

T9, cell phone interface 297
Tan, Kelvin 291, 304
Term 23
term

definition 103
navigation with Luke 273

term frequency 79, 331
weighting 359

term vectors 185–193
aggregating 191
browsing with Luke 275
computing angles 192
computing archetype

document 189
TermEnum 198
TermFreqVector 186
TermQuery 24, 71, 82

contrasted with
SpanTermQuery 161

from QueryParser 83
with synonyms 132

TextMining.org 250–251
TheServerSide 385
Tidy. See JTidy
Token 108
TokenFilter 109

additional 282
ordering 116

tokenization
definition 103

tokenization. See analysis
Tokenizer 109

additional 282
n-gram 357

tokens
meta-data 109
offsets 116
position increment 109
position increment in

Nutch 146
type 116, 127

visualizing positions 134
TokenStream 107

architecture 110
for highlighting 300

Tomcat
demo application 390

tool
command-line

interface 269
Lucene Index Monitor 279
Luke 271

TopDocs 200
TopFieldDocs 200
transliteration 355, 359
troubleshooting 392

U

UbiCrawler 26
Unicode 140
UNIX 17
user interface 6
UTF-8 140

V

Vajda, Andi 308, 322
van Klinken, Ben 314
vector. See term vectors
Verity 26
visualization

with XM-
InformationMinder 346

W

Walls, Craig 361
web application

CSS highlighting 301
demo 390
JavaScript 290
LIMO 279
Michaels.com 367
TheServerSide example 383

web crawler 7
alternatives 330
See also crawler

Webglimpse 26
WebStart, Lucene Index

Toolbox 272
weighting, n-grams 360
Licensed to Jason Ruesch <krhonos713@hotmail.com>

INDEX 421
WhitespaceAnalyzer 119
example 104

WildcardQuery 90
from QueryParser 91
performance issue 213
prohibiting 204

Witten, Ian H. 26
WordNet 292–300
WordNetSynonymEngine 297

X

Xapian 25

Omega 25
xargs 17
Xerces 227–230
Xerces Native Interface

(XNI) 245
XM-InformationMinder

344–350
XML

configuration 380
encoding 140
parsing 107
search results 343

Xpdf 264

XSL
transforming search

results 343

Y

Yahoo! 6

Z

Zilverline 7
Licensed to Jason Ruesch <krhonos713@hotmail.com>

Lucene is a gem in the open-source world—a highly scalable, fast
search engine. It delivers performance and is disarmingly easy to
use. Lucene in Action is the authoritative guide to Lucene. It

describes how to index your data, including types you definitely need to
know such as MS Word, PDF, HTML, and XML. It introduces you to
searching, sorting, filtering, and highlighting search results.

Lucene powers search in surprising places—in discussion groups at
Fortune 100 companies, in commercial issue trackers, in email search
from Microsoft, in the Nutch web search engine (that scales to
billions of pages). It is used by diverse companies including Akamai,
Overture, Technorati, HotJobs, Epiphany, FedEx, Mayo Clinic, MIT,
New Scientist Magazine, and many others.

Adding search to your application can be easy. With many reusable
examples and good advice on best practices, Lucene in Action shows
you how.

What’s Inside

n How to integrate Lucene into your applications

n Ready-to-use framework for rich document handling

n Case studies including Nutch, TheServerSide, jGuru, etc.

n Lucene ports to Perl, Python, C#/.Net, and C++

n Sorting, filtering, term vectors, multiple, and remote index searching

n The new SpanQuery family, extending query parser, hit collecting

n Performance testing and tuning

n Lucene add-ons (hit highlighting, synonym lookup, and others)

A committer on the Ant, Lucene, and Tapestry open-source projects,
Erik Hatcher is coauthor of Manning’s award-winning Java Development
with Ant. Otis Gospodnetic is a Lucene committer, a member of Apache
Jakarta Project Management Committee, and maintainer of the jGuru’s
Lucene FAQ. Both authors have published numerous technical articles
including several on Lucene.

M A N N I N G $44.95 US/$60.95 Canada

JAVA

Lucene IN ACTION
Otis Gospodnetic • Erik Hatcher FOREWORD BY Doug Cutting

“… packed with examples
and advice on how to
effectively use this
incredibly powerful tool.”

—Brian Goetz
Principal Consultant,
Quiotix Corporation

“… it unlocked for me the
amazing power of Lucene.”

—Reece Wilton, Staff Engineer,
Walt Disney Internet Group

“… the code examples are
useful and reusable.”

—Scott Ganyo
Jakarta Lucene Committer

“… code samples as JUnit test
cases are incredibly helpful.”

—Norman Richards, co-author
XDoclet in Action

,!7IB9D2-djecid!:p;o;O;t;P
ISBN 1-932394-28-1

´

´

www.manning.com/hatcher

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code examples
	Why JUnit?
	JUnit primer

	Code conventions and downloads
	Author online
	About the authors
	About the title
	About the cover illustration

	Part 1 - Core Lucene
	Meet Lucene
	1.1 Evolution of information organization and access
	1.2 Understanding Lucene
	1.2.1 What Lucene is
	1.2.2 What Lucene can do for you
	1.2.3 History of Lucene
	1.2.4 Who uses Lucene
	1.2.5 Lucene ports: Perl, Python, C++, .NET, Ruby

	1.3 Indexing and searching
	1.3.1 What is indexing, and why is it important?
	1.3.2 What is searching?

	1.4 Lucene in action: a sample application
	1.4.1 Creating an index
	1.4.2 Searching an index

	1.5 Understanding the core indexing classes
	1.5.1 IndexWriter
	1.5.2 Directory
	1.5.3 Analyzer
	1.5.4 Document
	1.5.5 Field

	1.6 Understanding the core searching classes
	1.6.1 IndexSearcher
	1.6.2 Term
	1.6.3 Query
	1.6.4 TermQuery
	1.6.5 Hits

	1.7 Review of alternate search products
	1.7.1 IR libraries
	1.7.2 Indexing and searching applications
	1.7.3 Online resources

	1.8 Summary

	Indexing
	2.1 Understanding the indexing process
	2.1.1 Conversion to text
	2.1.2 Analysis
	2.1.3 Index writing

	2.2 Basic index operations
	2.2.1 Adding documents to an index
	2.2.2 Removing Documents from an index
	2.2.3 Undeleting Documents
	2.2.4 Updating Documents in an index

	2.3 Boosting Documents and Fields
	2.4 Indexing dates
	2.5 Indexing numbers
	2.6 Indexing Fields used for sorting
	2.7 Controlling the indexing process
	2.7.1 Tuning indexing performance
	2.7.2 In-memory indexing: RAMDirectory
	2.7.3 Limiting Field sizes: maxFieldLength

	2.8 Optimizing an index
	2.9 Concurrency, thread-safety, and locking issues
	2.9.1 Concurrency rules
	2.9.2 Thread-safety
	2.9.3 Index locking
	2.9.4 Disabling index locking

	2.10 Debugging indexing
	2.11 Summary

	Adding search to your application
	3.1 Implementing a simple search feature
	3.1.1 Searching for a specific term
	3.1.2 Parsing a user-entered query expression: QueryParser

	3.2 Using IndexSearcher
	3.2.1 Working with Hits
	3.2.2 Paging through Hits
	3.2.3 Reading indexes into memory

	3.3 Understanding Lucene scoring
	3.3.1 Lucene, you got a lot of ‘splainin’ to do!

	3.4 Creating queries programmatically
	3.4.1 Searching by term: TermQuery
	3.4.2 Searching within a range: RangeQuery
	3.4.3 Searching on a string: PrefixQuery
	3.4.4 Combining queries: BooleanQuery
	3.4.5 Searching by phrase: PhraseQuery
	3.4.6 Searching by wildcard: WildcardQuery
	3.4.7 Searching for similar terms: FuzzyQuery

	3.5 Parsing query expressions: QueryParser
	3.5.1 Query.toString
	3.5.2 Boolean operators
	3.5.3 Grouping
	3.5.4 Field selection
	3.5.5 Range searches
	3.5.6 Phrase queries
	3.5.7 Wildcard and prefix queries
	3.5.8 Fuzzy queries
	3.5.9 Boosting queries
	3.5.10 To QueryParse or not to QueryParse?

	3.6 Summary

	Analysis
	4.1 Using analyzers
	4.1.1 Indexing analysis
	4.1.2 QueryParser analysis
	4.1.3 Parsing versus analysis: when an analyzer isn’t appropriate

	4.2 Analyzing the analyzer
	4.2.1 What’s in a token?
	4.2.2 TokenStreams uncensored
	4.2.3 Visualizing analyzers
	4.2.4 Filtering order can be important

	4.3 Using the built-in analyzers
	4.3.1 StopAnalyzer
	4.3.2 StandardAnalyzer

	4.4 Dealing with keyword fields
	4.4.1 Alternate keyword analyzer

	4.5 “Sounds like” querying
	4.6 Synonyms, aliases, and words that mean the same
	4.6.1 Visualizing token positions

	4.7 Stemming analysis
	4.7.1 Leaving holes
	4.7.2 Putting it together
	4.7.3 Hole lot of trouble

	4.8 Language analysis issues
	4.8.1 Unicode and encodings
	4.8.2 Analyzing non-English languages
	4.8.3 Analyzing Asian languages
	4.8.4 Zaijian

	4.9 Nutch analysis
	4.10 Summary

	Advanced search techniques
	5.1 Sorting search results
	5.1.1 Using a sort
	5.1.2 Sorting by relevance
	5.1.3 Sorting by index order
	5.1.4 Sorting by a field
	5.1.5 Reversing sort order
	5.1.6 Sorting by multiple fields
	5.1.7 Selecting a sorting field type
	5.1.8 Using a nondefault locale for sorting
	5.1.9 Performance effect of sorting

	5.2 Using PhrasePrefixQuery
	5.3 Querying on multiple fields at once
	5.4 Span queries: Lucene’s new hidden gem
	5.4.1 Building block of spanning, SpanTermQuery
	5.4.2 Finding spans at the beginning of a field
	5.4.3 Spans near one another
	5.4.4 Excluding span overlap from matches
	5.4.5 Spanning the globe
	5.4.6 SpanQuery and QueryParser

	5.5 Filtering a search
	5.5.1 Using DateFilter
	5.5.2 Using QueryFilter
	5.5.3 Security filters
	5.5.4 A QueryFilter alternative
	5.5.5 Caching filter results
	5.5.6 Beyond the built-in filters

	5.6 Searching across multiple Lucene indexes
	5.6.1 Using MultiSearcher
	5.6.2 Multithreaded searching using ParallelMultiSearcher

	5.7 Leveraging term vectors
	5.7.1 Books like this
	5.7.2 What category?

	5.8 Summary

	Extending search
	6.1 Using a custom sort method
	6.1.1 Accessing values used in custom sorting

	6.2 Developing a custom HitCollector
	6.2.1 About BookLinkCollector
	6.2.2 Using BookLinkCollector

	6.3 Extending QueryParser
	6.3.1 Customizing QueryParser’s behavior
	6.3.2 Prohibiting fuzzy and wildcard queries
	6.3.3 Handling numeric field-range queries
	6.3.4 Allowing ordered phrase queries

	6.4 Using a custom filter
	6.4.1 Using a filtered query

	6.5 Performance testing
	6.5.1 Testing the speed of a search
	6.5.2 Load testing
	6.5.3 QueryParser again!
	6.5.4 Morals of performance testing

	6.6 Summary

	Part 2 - Applied Lucene
	Parsing common document formats
	7.1 Handling rich-text documents
	7.1.1 Creating a common DocumentHandler interface

	7.2 Indexing XML
	7.2.1 Parsing and indexing using SAX
	7.2.2 Parsing and indexing using Digester

	7.3 Indexing a PDF document
	7.3.1 Extracting text and indexing using PDFBox
	7.3.2 Built-in Lucene support

	7.4 Indexing an HTML document
	7.4.1 Getting the HTML source data
	7.4.2 Using JTidy
	7.4.3 Using NekoHTML

	7.5 Indexing a Microsoft Word document
	7.5.1 Using POI
	7.5.2 Using TextMining.org’s API

	7.6 Indexing an RTF document
	7.7 Indexing a plain-text document
	7.8 Creating a document-handling framework
	7.8.1 FileHandler interface
	7.8.2 ExtensionFileHandler
	7.8.3 FileIndexer application
	7.8.4 Using FileIndexer
	7.8.5 FileIndexer drawbacks, and how to extend the framework

	7.9 Other text-extraction tools
	7.9.1 Document-management systems and services

	7.10 Summary

	Tools and extensions
	8.1 Playing in Lucene’s Sandbox
	8.2 Interacting with an index
	8.2.1 lucli: a command-line interface
	8.2.2 Luke: the Lucene Index Toolbox
	8.2.3 LIMO: Lucene Index Monitor

	8.3 Analyzers, tokenizers, and TokenFilters, oh my
	8.3.1 SnowballAnalyzer
	8.3.2 Obtaining the Sandbox analyzers

	8.4 Java Development with Ant and Lucene
	8.4.1 Using the <index> task
	8.4.2 Creating a custom document handler
	8.4.3 Installation

	8.5 JavaScript browser utilities
	8.5.1 JavaScript query construction and validation
	8.5.2 Escaping special characters
	8.5.3 Using JavaScript support

	8.6 Synonyms from WordNet
	8.6.1 Building the synonym index
	8.6.2 Tying WordNet synonyms into an analyzer
	8.6.3 Calling on Lucene

	8.7 Highlighting query terms
	8.7.1 Highlighting with CSS
	8.7.2 Highlighting Hits

	8.8 Chaining filters
	8.9 Storing an index in Berkeley DB
	8.9.1 Coding to DbDirectory
	8.9.2 Installing DbDirectory

	8.10 Building the Sandbox
	8.10.1 Check it out
	8.10.2 Ant in the Sandbox

	8.11 Summary

	Lucene ports
	9.1 Ports’ relation to Lucene
	9.2 CLucene
	9.2.1 Supported platforms
	9.2.2 API compatibility
	9.2.3 Unicode support
	9.2.4 Performance
	9.2.5 Users

	9.3 dotLucene
	9.3.1 API compatibility
	9.3.2 Index compatibility
	9.3.3 Performance
	9.3.4 Users

	9.4 Plucene
	9.4.1 API compatibility
	9.4.2 Index compatibility
	9.4.3 Performance
	9.4.4 Users

	9.5 Lupy
	9.5.1 API compatibility
	9.5.2 Index compatibility
	9.5.3 Performance
	9.5.4 Users

	9.6 PyLucene
	9.6.1 API compatibility
	9.6.2 Index compatibility
	9.6.3 Performance
	9.6.4 Users

	9.7 Summary

	Case studies
	10.1 Nutch: “The NPR of search engines”
	10.1.1 More in depth
	10.1.2 Other Nutch features

	10.2 Using Lucene at jGuru
	10.2.1 Topic lexicons and document categorization
	10.2.2 Search database structure
	10.2.3 Index fields
	10.2.4 Indexing and content preparation
	10.2.5 Queries
	10.2.6 JGuruMultiSearcher
	10.2.7 Miscellaneous

	10.3 Using Lucene in SearchBlox
	10.3.1 Why choose Lucene?
	10.3.2 SearchBlox architecture
	10.3.3 Search results
	10.3.4 Language support
	10.3.5 Reporting Engine
	10.3.6 Summary

	10.4 Competitive intelligence with Lucene in XtraMind’s XM-InformationMinder™
	10.4.1 The system architecture
	10.4.2 How Lucene has helped us

	10.5 Alias-i: orthographic variation with Lucene
	10.5.1 Alias-i application architecture
	10.5.2 Orthographic variation
	10.5.3 The noisy channel model of spelling correction
	10.5.4 The vector comparison model of spelling variation
	10.5.5 A subword Lucene analyzer
	10.5.6 Accuracy, efficiency, and other applications
	10.5.7 Mixing in context
	10.5.8 References

	10.6 Artful searching at Michaels.com
	10.6.1 Indexing content
	10.6.2 Searching content
	10.6.3 Search statistics
	10.6.4 Summary

	10.7 I love Lucene: TheServerSide
	10.7.1 Building better search capability
	10.7.2 High-level infrastructure
	10.7.3 Building the index
	10.7.4 Searching the index
	10.7.5 Configuration: one place to rule them all
	10.7.6 Web tier: TheSeeeeeeeeeeeerverSide?
	10.7.7 Summary

	10.8 Conclusion

	Installing Lucene
	A.1 Binary installation
	A.2 Running the command-line demo
	A.3 Running the web application demo
	A.4 Building from source
	A.5 Troubleshooting

	Lucene index format
	B.1 Logical index view
	B.2 About index structure
	B.2.1 Understanding the multifile index structure
	B.2.2 Understanding the compound index structure
	B.2.3 Converting from one index structure to the other

	B.3 Choosing the index structure
	B.3.1 Calculating the number of open files
	B.3.2 Comparing performance

	B.4 Inverted index
	B.4.1 Inside the index

	B.5 Summary

	Resources
	C.1 Internationalization
	C.2 Language detection
	C.3 Term vectors
	C.4 Lucene ports
	C.5 Case studies
	C.6 Document parsers
	C.7 Miscellaneous
	C.8 IR software
	C.9 Doug Cutting’s publications
	C.9.1 Conference papers
	C.9.2 U.S. Patents

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

